ترغب بنشر مسار تعليمي؟ اضغط هنا

التصنيف الجميل المحبوس من التحيز السياسي في الأخبار الألمانية: مجموعة بيانات والتجارب الأولية

Fine-grained Classification of Political Bias in German News: A Data Set and Initial Experiments

240   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نقدم مجموعة بيانات تتكون من مقالات إخبارية ألمانية تسمى التحيز السياسي على مقياس من خمس نقاط في طريقة نصف إشراف.في حين أن العمل المبكر على الكشف عن الأخبار Hyperpartisan يستخدم التصنيف الثنائي (أي Hyperpartisan أو لا) وبيانات اللغة الإنجليزية، فإننا نقول للحصول على تصنيف أكثر غرامة، تغطي الطيف السياسي الكامل (أي بعيدا، اليسار، اليسار، المركز، اليمين، بعيدا- رايت) ولمنس البحث إلى البيانات الألمانية.فهم التحيز السياسي يساعد بدقة في اكتشاف خطاب الكراهية وإساءة الاستخدام عبر الإنترنت.نقوم بتجربة أساليب تصنيف مختلفة للكشف عن التحيز السياسي.تؤكد أدائها المنخفض نسبيا (ماكرو-F1 من 43 من أفضل إعداد لدينا، مقارنة ب Macro-F1 من 79 بمهمة التصنيف الثنائية) إلى الحاجة إلى بيانات أكثر (متوازنة) المشروح بطريقة محترمة بشكل جيد.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

مع استمرار العالم في محاربة جائحة CovID-19، فإنه يقاتل في وقت واحد من نقص الدم "- وهو طوفان من تضليل وانتشار نظريات المؤامرة المؤدية إلى تهديدات صحية وشعبة المجتمع. لمكافحة هذا المعكرية، هناك حاجة ملحة لمجموعات البيانات القياسية التي يمكن أن تساعد ال باحثين على تطوير وتقييم النماذج الموجهة نحو الكشف التلقائي عن التضليل. في حين أن هناك جهودا متزايدة لإنشاء مجموعات بيانات قياسية كافية ومفتوحة للمصدر للغة الإنجليزية، فإن الموارد القابلة للمقارنة غير متاحة تقريبا بالنسبة للألمانية، مما يترك البحث في اللغة الألمانية متخلفة بشكل كبير. في هذه الورقة، نقدم DataSet المعيار الجديد Fang-Covid يتكون من 28،056 مواد إخبارية ألمانية حقيقية و 13،186 مرتبطة بمعائق CovID-19 وكذلك بيانات عن انتشارها على Twitter. علاوة على ذلك، نقترح نموذجا قابل للتفسير القائم على السياق والاجتماعي للكشف عن الأخبار المزيفة، ومقارنة أدائه إلى النماذج والأداء الأسود الميزة لتقييم الأهمية النسبية للميزات القابلة للتفسير البشرية في التمييز بين الأخبار المزيفة من الأخبار الأصلية وبعد
تحيز وسائل الإعلام هي ظاهرة سائدة موجودة في معظم أشكال الوسائط المطبوعة والإلكترونية مثل المقالات الإخبارية والمدونات أو التغريدات، وما إلى ذلك. نظرا لأن وسائل الإعلام تلعب دورا محوريا في تشكيل الرأي العام تجاه الأحداث السياسية، غالبا ما تستخدم كل من الأحزاب السياسية والإعلام في كثير من الأحيان هذه المصادركمنافذ لنشر التحيزات الخاصة بهم للجمهور.كانت هناك بعض الأبحاث حول الكشف عن التحيز السياسي في مقالات إخبارية.ومع ذلك، لا يحاول أي منه تحليل طبيعة التحيز أو تحديد حجم التحيز في نص معين.تقدم هذه الورقة تحيزا سياسيا مشروحا كوربوس بيز.POBICO-21، المشروح باستخدام مخطط مصمم خصيصا مع 10 ملصقات لالتقاط تقنيات مختلفة تستخدم لإنشاء تحيز سياسي في الأخبار.نخلق تصنيف هذه التقنيات بناء على مساهمتها في التحيز.بعد التحقق من صحة الترتيب، نقترح طرق لاستخدامها لتحديد حجم التحيز في المقالات الإخبارية السياسية.
يشكل الاستخدام الواسع للإنترنت والنشر السريع للمعلومات التحدي المتمثل في تحديد صحة محتواه. اكتشف الكشف عن الموقف، الذي تعد مهمة التنبؤ بموقف نص فيما يتعلق بهدف محدد (سؤال المطالبة أو النقاش)، لتحديد صحة المعلومات في مهام مثل تصنيف الشائعات والكشف عن الأخبار المزيفة. في حين أن معظم الأعمال ومجموعات البيانات المتاحة للكشف عن الموقف يعالج النصوص القصيرة مقتطفات مستخرجة من الحوارات النصية، أو منصات وسائل التواصل الاجتماعي، أو عناوين الأخبار مع التركيز القوي على اللغة الإنجليزية، فهناك نقص في الموارد المستهدفة للنصوص الطويلة بلغات أخرى. مساهمتنا في هذه الورقة هي ذات شقين. أولا، نقدم مجموعة بيانات ألمانية من أسئلة النقاش والمقالات الإخبارية التي يتم تفاحها يدويا للكشف عن الموقف والعاطفة. ثانيا، نستفيد من مجموعة البيانات لمعالجة المهمة الخاضعة للإشراف على تصنيف موقف مقال إخباري فيما يتعلق بمسألة النقاش وتوفير نماذج خط الأساس كمرجع للعمل في المستقبل بشأن اكتشاف الموقف في المقالات الإخبارية الألمانية.
قدم الصفات مثل الثقيلة (كما هو الحال في الأمطار الغزيرة) والرياح (كما في يوم عاصف) القيم المحتملة لشدة السمات ومناخها على التوالي. لا تتحقق السمات نفسها بشكل علني وهناها هذه المنطقة الضالة. في حين يمكن استنتاج هذه السمات بسهولة من قبل البشر، فإن تصني فهم التلقائي يشكل مهمة صعبة للنماذج الحسابية. نقدم المساهمات التالية: (1) نكتسب رؤى جديدة في مهمة اختيار السمات للألمانية. وبشكل أكثر تحديدا، نطور نماذج حسابية لهذه المهمة التي يمكن أن تعميم البيانات غير المرئية. علاوة على ذلك، نوضح أن دقة التصنيف تعتمد، في جملة أمور، على درجة Polysemy في Lexemes المعنية، على إمكانات تعميم البيانات التدريبية وعلى درجة الشفافية الدلالية في أزواج صفة الأسماء المعنية. (2) نحن نقدم الموارد الأولى للتجارب الحسابية واللغوية مع أزواج الأسماء المصرفية الألمانية التي يمكن استخدامها في اختيار السمات والمهام ذات الصلة. من أجل حماية آثار الحفظ غير المرغوب فيه، نقدم طريقة تكبير البيانات التلقائي استنادا إلى مورد معجمي يمكن أن يزيد من حجم بيانات التدريب إلى حد كبير.
لفتت تلخيص الحوار اهتماما كبيرا مؤخرا. خاصة في مجال خدمة العملاء، يمكن للوكلاء استخدام ملخصات الحوار للمساعدة في زيادة أعمالهم من خلال معرفة قضايا العملاء بسرعة وتقدم الخدمة. تتطلب هذه التطبيقات ملخصات لاحتواء منظور مكبر صوت واحد ولديك هيكل تدفق موضو ع واضح، في حين لا يتوفر في مجموعات البيانات الحالية. لذلك، في هذه الورقة، نقدم مجموعة بيانات صينية جديدة لتلخيص حوار خدمة العملاء (CSDS). يعمل CSDS على تحسين الملخصات الإفراطية في جوانب: (1) بالإضافة إلى الملخص العام للحوار بأكمله، كما يتم تقديم ملخصات الأدوار أيضا للحصول على وجهات نظر مكبرات صوت مختلفة. (2) تلخص جميع الملخصات لكل موضوع بشكل منفصل، وبالتالي تحتوي على هيكل مستوى الموضوع للحوار. نحدد المهام في CSDS كمولية الملخص الشامل والملخصات المختلفة الموجهة نحو الأدوار لحوار معين. بعد ذلك، نقارن العديد من طرق التلخيص على CSDS، وإظهار نتائج التجربة أن الطرق الحالية عرضة لتوليد ملخصات زائدة وغير متماسكة. علاوة على ذلك، يصبح الأداء أسوأ بكثير عند تحليل الأداء في ملخصات الأدوار وهياكل الموضوعات. نأمل أن تتمكن هذه الدراسة من مراجعة تلخيص الحوار الصيني وفائدة المزيد من الدراسات.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا