ترغب بنشر مسار تعليمي؟ اضغط هنا

CSDS: مجموعة بيانات صينية محبوبة من أجل حجز خدمة العملاء

CSDS: A Fine-Grained Chinese Dataset for Customer Service Dialogue Summarization

375   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

لفتت تلخيص الحوار اهتماما كبيرا مؤخرا. خاصة في مجال خدمة العملاء، يمكن للوكلاء استخدام ملخصات الحوار للمساعدة في زيادة أعمالهم من خلال معرفة قضايا العملاء بسرعة وتقدم الخدمة. تتطلب هذه التطبيقات ملخصات لاحتواء منظور مكبر صوت واحد ولديك هيكل تدفق موضوع واضح، في حين لا يتوفر في مجموعات البيانات الحالية. لذلك، في هذه الورقة، نقدم مجموعة بيانات صينية جديدة لتلخيص حوار خدمة العملاء (CSDS). يعمل CSDS على تحسين الملخصات الإفراطية في جوانب: (1) بالإضافة إلى الملخص العام للحوار بأكمله، كما يتم تقديم ملخصات الأدوار أيضا للحصول على وجهات نظر مكبرات صوت مختلفة. (2) تلخص جميع الملخصات لكل موضوع بشكل منفصل، وبالتالي تحتوي على هيكل مستوى الموضوع للحوار. نحدد المهام في CSDS كمولية الملخص الشامل والملخصات المختلفة الموجهة نحو الأدوار لحوار معين. بعد ذلك، نقارن العديد من طرق التلخيص على CSDS، وإظهار نتائج التجربة أن الطرق الحالية عرضة لتوليد ملخصات زائدة وغير متماسكة. علاوة على ذلك، يصبح الأداء أسوأ بكثير عند تحليل الأداء في ملخصات الأدوار وهياكل الموضوعات. نأمل أن تتمكن هذه الدراسة من مراجعة تلخيص الحوار الصيني وفائدة المزيد من الدراسات.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في سيناريو دردشة خدمة العملاء النموذجي، اتصل العملاء بمركز دعم لطلب المساعدة أو رفع الشكاوى، وحاول الوكلاء البشريون حل المشكلات.في معظم الحالات، يطلب من الوكلاء في نهاية المحادثة كتابة ملخص قصير يؤكد على المشكلة والحل المقترح، عادة من أجل فائدة الوكل اء الآخرين الذين قد يتعين عليهم التعامل مع نفس العميل أو المشكلة.الهدف من هذه المقالة يدعى إلى أتمتة هذه المهمة.نقدم مجموعة بيانات ملخصات حوار عملاء عالية الجودة وعالية الجودة ذات الجودة العالية مع مقربة من 1400 ملخصات مشروح بشرية.تعتمد البيانات على مربعات اتصال دعم العملاء في العالم الحقيقي وتتضمن ملخصات خارجية ومخفية.نحن نقدم أيضا طريقة تلخيص غير مخالفات جديدة غير محددة
أظهرت نماذج محولات محول مسبقا واسعة النطاق أداء حديثة (SOTA) في مجموعة متنوعة من مهام NLP.في الوقت الحاضر، تتوفر العديد من النماذج المحددة مسبقا في النكهات النموذجية المختلفة ولغات مختلفة، ويمكن تكييفها بسهولة مع المهمة المصب الأولى.ومع ذلك، فإن عدد محدود فقط من النماذج متاحة لمهام الحوار، وخاصة مهام الحوار الموجهة نحو الأهداف.بالإضافة إلى ذلك، يتم تدريب النماذج المحددة مسبقا على لغة المجال العامة، مما يخلق عدم تطابقا بين لغة المحترفين ومجال المصب المصب.في هذه المساهمة، نقدم CS-Bert، نموذج BERT مسبقا على ملايين الحوارات في مجال خدمة العملاء.نقوم بتقييم CS-Bert على العديد من مهام حوار خدمة العملاء في العديد من مهام خدمة العملاء، وإظهار أن محالقنا في المجال لدينا مفيد مقارنة بالنماذج الأخرى المحددة مسبقا في كل من التجارب الصفري بالرصاص وكذلك في التجارب الصفرية، خاصة في إعداد بيانات منخفض الموارد.
تقدم هذه الورقة MediaSum، مجموعة بيانات مقابلة الوسائط على نطاق واسع تتكون من نصوص 463.6 كيلو بايت مع ملخصات إبتياج.لإنشاء هذه البيانات، نجمع مخالفات المقابلة من NPR و CNN وتوظيف نظرة عامة وأوصاف موضوع كملخصات.مقارنة مع الشركة العامة القائمة للحصول ع لى تلخيص الحوار، فإن DataSet لدينا هي أمر من حيث الحجم ويحتوي على محادثات متعددة الأحزاب المعقدة من مجالات متعددة.نقوم بإجراء تحليل إحصائي لإظهار التحيز الموضعي الفريد المعروض في نصوص المقابلات التلفزيونية والإذاعية.نظهر أيضا أن MediaSum يمكن استخدامه في تعلم التعلم لتحسين أداء نموذج على مهام تلخيص حوار أخرى.
اجتذبت تحليل المعنويات الاهتمام المتزايد في التجارة الإلكترونية. تعتبر أسابير المشاعر الأساسيين لمراجعات المستخدمين ذات قيمة كبيرة لذكاء الأعمال. تحليل المعنويات الفئة في الأساس (ACSA) ومراجعة التنبؤ بالتصنيف (RP) هما مهامان أساسيان للكشف عن أسطاطات المشاعر الدقيقة إلى الخشنة. ترتبط ACSA و RP بشكل كبير وعادة ما تستخدم بشكل مشترك في سيناريوهات التجارة الإلكترونية في العالم الحقيقي. في حين يتم بناء معظم مجموعات البيانات العامة ل ACSA و RP بشكل منفصل، مما قد يحد من استغلالهما الإضافي لكلتا المهام. لمعالجة المشكلة والبحثات المتقدمة ذات الصلة، نقدم مراجعة مطعم صيني واسع النطاق في اسرع وقت ممكن في اسرع وقت ممكن في اسرع وقت ممكن 46، 730 مراجعات أصلية من نظام التجارة الإلكترونية الرائدة عبر الإنترنت (O2O) في الصين. إلى جانب تصنيف مقياس من 5 نجوم، يتم تفجيح كل مراجعة يدويا وفقا لأقطاب المعنويات نحو 18 فئة من الارتفاع المحدد مسبقا. نأمل أن يتم إلقاء الإفراج عن DataSet على إلقاء بعض الضوء على مجال تحليل المعنويات. علاوة على ذلك، نقترح نموذج مشترك بديهي ولكن فعال ل ACSA و RP. توضح النتائج التجريبية أن النموذج المشترك تفوق خطوط الأساس الحديثة في كلا المهام.
غير قادر على أهمية فهم الإعلان والكوميديا وسياسة الكلب الصافرة.ومع ذلك، يتم إعاقة البحوث الحسابية على غير قادر على عدم وجود مجموعات البيانات المتاحة.في هذه الورقة، نقترح مجموعة بيانات صينية كبيرة ومتنوعة لإنشاء وفهم غير قادر على منظور اللغويات الحساب ية.نحن صياغة مهمة لا يمكن فهمها وتوفير كل من التحليل الكمي والنوعي لكل من كلمة اختبار تضمين التشابه واللغة المحددة مسبقا.تشير التجارب إلى أن هذه المهمة تتطلب فهم اللغة العميقة والضمان السليم والمعرفة العالمية وبالتالي يمكن أن يكون اختبارا جيدا من أجل نماذج اللغة المحددة مسبقا ونماذج المساعدة تؤدي بشكل أفضل على المهام الأخرى.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا