ترغب بنشر مسار تعليمي؟ اضغط هنا

Darboux-integration of idrho/dt=[H,f(rho)]

225   0   0.0 ( 0 )
 نشر من قبل M. Czachor
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A Darboux-type method of solving the nonlinear von Neumann equation $idot rho=[H,f(rho)]$, with functions $f(rho)$ commuting with $rho$, is developed. The technique is based on a representation of the nonlinear equation by a compatibility condition for an overdetermined linear system. von Neumann equations with various nonlinearities $f(rho)$ are found to possess the so-called self-scattering solutions. To illustrate the result we consider the Hamiltonian $H$ of a one-dimensional harmonic oscillator and $f(rho)=rho^q-2rho^{q-1}$ with arbitary real $q$. It is shown that self-scattering solutions possess the same asymptotics for all $q$ and that different nonlinearities may lead to effectively indistinguishable evolutions. The result may have implications for nonextensive statistics and experimental tests of linearity of quantum mechanics.



قيم البحث

اقرأ أيضاً

We propose an extended version of quantum dynamics for a certain system S, whose evolution is ruled by a Hamiltonian $H$, its initial conditions, and a suitable set $rho$ of {em rules}, acting repeatedly on S. The resulting dynamics is not necessaril y periodic or quasi-periodic, as one could imagine for conservative systems with a finite number of degrees of freedom. In fact, it may have quite different behaviors depending on the explicit forms of $H$, $rho$ as well as on the initial conditions. After a general discussion on this $(H,rho)$-{em induced dynamics}, we apply our general ideas to extend the classical game of life, and we analyze several aspects of this extension.
Singular Darboux transformations, in contrast to the conventional ones, have a singular matrix as a coefficient before the derivative. We incorporated such transformations into a chain of conventional transformations and presented determinant formula s for the resulting action of the chain. A determinant representation of the Kohlhoff-von Geramb solution to the Marchenko equation is given.
We consider two one dimensional nonlinear oscillators, namely (i) Higgs oscillator and (ii) a $k$-dependent nonpolynomial rational potential, where $k$ is the constant curvature of a Riemannian manifold. Both the systems are of position dependent mas s form, ${displaystyle m(x) = frac{1}{(1 + k x^2)^2}}$, belonging to the quadratic Li$acute{e}$nard type nonlinear oscillators. They admit different kinds of motions at the classical level. While solving the quant
We consider the problem of removal of ordering ambiguity in position dependent mass quantum systems characterized by a generalized position dependent mass Hamiltonian which generalizes a number of Hermitian as well as non-Hermitian ordered forms of t he Hamiltonian. We implement point canonical transformation method to map one-dimensional time-independent position dependent mass Schr${o}$dinger equation endowed with potentials onto constant mass counterparts which are considered to be exactly solvable. We observe that a class of mass functions and the corresponding potentials give rise to solutions that do not depend on any particular ordering, leading to the removal of ambiguity in it. In this case, it is imperative that the ordering is Hermitian. For non-Hermitian ordering we show that the class of systems can also be exactly solvable and are also shown to be iso-spectral using suitable similarity transformations. We also discuss the normalization of the eigenfunctions obtained from both Hermitian and non-Hermitian orderings. We illustrate the technique with the quadratic Li${e}$nard type nonlinear oscillators, which admit position dependent mass Hamiltonians.
We calculate diffractive photo- and leptoproduction of $rho$-, $rho$- and $rho$-mesons. The incoming photon dissociates into a $qbar{q}$-dipole which scatters on the nucleon and transforms into a vector meson state. The scattering amplitude is calcul ated in non-perturbative QCD with the model of the stochastic vacuum. Assuming that the physical $rho$- and $rho$-mesons are mixed states of an active 2S-excitation and some residual hybrid state which cannot be produced diffractively in lowest order QCD, we obtain good agreement with the data, especially the markedly different spectrum in the $pi^+pi^-$-invariant mass for photoproduction and $e^+e^-$-annihilation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا