ﻻ يوجد ملخص باللغة العربية
We consider two one dimensional nonlinear oscillators, namely (i) Higgs oscillator and (ii) a $k$-dependent nonpolynomial rational potential, where $k$ is the constant curvature of a Riemannian manifold. Both the systems are of position dependent mass form, ${displaystyle m(x) = frac{1}{(1 + k x^2)^2}}$, belonging to the quadratic Li$acute{e}$nard type nonlinear oscillators. They admit different kinds of motions at the classical level. While solving the quant
We consider the problem of removal of ordering ambiguity in position dependent mass quantum systems characterized by a generalized position dependent mass Hamiltonian which generalizes a number of Hermitian as well as non-Hermitian ordered forms of t
Based on a system-reservoir model and an appropriate choice of nonlinear coupling, we have explored the microscopic quantum generalization of classical Li{e}nard systems. Making use of oscillator coherent states and canonical thermal distributions of
We consider the global thermal state of classical and quantum harmonic oscillators that interact with a reservoir. Ohmic damping of the oscillator can be exactly treated with a 1D scalar field reservoir, whereas general non-Ohmic damping is convenien
We analyze a class of dynamics of open quantum systems which is governed by the dynamical map mutually commuting at different times. Such evolution may be effectively described via spectral analysis of the corresponding time dependent generators. We consider both Markovian and non-Markovian cases.
We study the quantum and classical evolution of a system of three harmonic modes interacting via a trilinear Hamiltonian. With the modes prepared in thermal states of different temperatures, this model describes the working principle of an absorption