ﻻ يوجد ملخص باللغة العربية
We propose an extended version of quantum dynamics for a certain system S, whose evolution is ruled by a Hamiltonian $H$, its initial conditions, and a suitable set $rho$ of {em rules}, acting repeatedly on S. The resulting dynamics is not necessarily periodic or quasi-periodic, as one could imagine for conservative systems with a finite number of degrees of freedom. In fact, it may have quite different behaviors depending on the explicit forms of $H$, $rho$ as well as on the initial conditions. After a general discussion on this $(H,rho)$-{em induced dynamics}, we apply our general ideas to extend the classical game of life, and we analyze several aspects of this extension.
We introduce a quantum version of the Game of Life and we use it to study the emergence of complexity in a quantum world. We show that the quantum evolution displays signatures of complex behaviour similar to the classical one, however a regime exist
We investigate the quantum dynamics of a spin chain that implements a quantum analog of Conways game of life. We solve the time-dependent Schrodinger equation starting with initial separable states and analyse the evolution of quantum correlations ac
We investigate a special class of cellular automata (CA) evolving in a environment filled by an electromagnetic wave. The rules of the Conways Game of Life are modified to account for the ability to retrieve life-sustenance from the field energy. Lig
A Darboux-type method of solving the nonlinear von Neumann equation $idot rho=[H,f(rho)]$, with functions $f(rho)$ commuting with $rho$, is developed. The technique is based on a representation of the nonlinear equation by a compatibility condition f
We introduce SudoQ, a quantum version of the classical game Sudoku. Allowing the entries of the grid to be (non-commutative) projections instead of integers, the solution set of SudoQ puzzles can be much larger than in the classical (commutative) set