ترغب بنشر مسار تعليمي؟ اضغط هنا

Boost-rotation symmetric type D radiative metrics in Bondi coordinates

59   0   0.0 ( 0 )
 نشر من قبل Juan A. Valiente
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The asymptotic properties of the solutions to the Einstein-Maxwell equations with boost-rotation symmetry and Petrov type D are studied. We find series solutions to the pertinent set of equations which are suitable for a late time descriptions in coordinates which are well adapted for the description of the radiative properties of spacetimes (Bondi coordinates). By calculating the total charge, Bondi and NUT mass and the Newman-Penrose constants of the spacetimes we provide a physical interpretation of the free parameters of the solutions. Additional relevant aspects on the asymptotics and radiative properties of the spacetimes considered, such as the possible polarization states of the gravitational and electromagnetic field, are discussed through the way.



قيم البحث

اقرأ أيضاً

We study the Bondi-Sachs rockets with nonzero cosmological constant. We observe that the acceleration of the systems arises naturally in the asymptotic symmetries of (anti-) de Sitter spacetimes. Assuming the validity of the concepts of energy and ma ss previously introduced in asymptotically flat spacetimes, we find that the emission of pure radiation energy balances the loss of the Bondi mass in certain special families of the Bondi-Sachs rockets, so in these there is no gravitational radiation.
We consider a characteristic initial value problem, with initial data given on a future null cone, for the Einstein (massless) scalar field system with a positive cosmological constant, in Bondi coordinates. We prove that, for small data, this system has a unique global classical solution which is causally geodesically complete to the future and decays polynomially in radius and exponentially in Bondi time, approaching the de Sitter solution.
152 - Paul Tod 2020
We consider four-dimensional, Riemannian, Ricci-flat metrics for which one or other of the self-dual or anti-self-dual Weyl tensors is type-D. Such metrics always have a valence-2 Killing spinor, and therefore a Hermitian structure and at least one K illing vector. We rederive the results of Przanowski and collaborators, that these metrics can all be given in terms of a solution of the $SU(infty)$-Toda field equation, and show that, when there is a second Killing vector commuting with the first, the method of Ward can be applied to show that the metrics can also be given in terms of an axisymmetric solution of the flat three-dimensional Laplacian. Thus in particular the field equations linearise. As a corollary, we show that the same technique linearises the field equations for a four-dimensional Einstein metric with anti-self-dual Weyl tensor and two commuting symmetries. Some examples of both constructions are given.
We consider the class of locally boost isotropic spacetimes in arbitrary dimension. For any spacetime with boost isotropy, the corresponding curvature tensor and all of its covariant derivatives must be simultaneously of alignment type ${bf D}$ relat ive to some common null frame. Such spacetimes are known as type ${bf D}^k$ spacetimes and are contained within the subclass of degenerate Kundt spacetimes. Although, these spacetimes are $mathcal{I}$-degenerate, it is possible to distinguish any two type ${bf D}^k$ spacetimes, as the curvature tensor and its covariant derivatives can be characterized by the set of scalar polynomial curvature invariants for any type ${bf D}^k$ spacetime. In this paper we find all type ${bf D}^k$ spacetimes by identifying degenerate Kundt metrics that are of type ${bf D}^k$ and determining the precise conditions on the metric functions.
We transform the metric of an isolated matter source in the multipolar post-Minkowskian approximation from harmonic (de Donder) coordinates to radiative Newman-Unti (NU) coordinates. To linearized order, we obtain the NU metric as a functional of the mass and current multipole moments of the source, valid all-over the exterior region of the source. Imposing appropriate boundary conditions we recover the generalized Bondi-van der Burg-Metzner-Sachs residual symmetry group. To quadratic order, in the case of the mass-quadrupole interaction, we determine the contributions of gravitational-wave tails in the NU metric, and prove that the expansion of the metric in terms of the radius is regular to all orders. The mass and angular momentum aspects, as well as the Bondi shear, are read off from the metric. They are given by the radiative quadrupole moment including the tail terms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا