ﻻ يوجد ملخص باللغة العربية
We consider the class of locally boost isotropic spacetimes in arbitrary dimension. For any spacetime with boost isotropy, the corresponding curvature tensor and all of its covariant derivatives must be simultaneously of alignment type ${bf D}$ relative to some common null frame. Such spacetimes are known as type ${bf D}^k$ spacetimes and are contained within the subclass of degenerate Kundt spacetimes. Although, these spacetimes are $mathcal{I}$-degenerate, it is possible to distinguish any two type ${bf D}^k$ spacetimes, as the curvature tensor and its covariant derivatives can be characterized by the set of scalar polynomial curvature invariants for any type ${bf D}^k$ spacetime. In this paper we find all type ${bf D}^k$ spacetimes by identifying degenerate Kundt metrics that are of type ${bf D}^k$ and determining the precise conditions on the metric functions.
The asymptotic properties of the solutions to the Einstein-Maxwell equations with boost-rotation symmetry and Petrov type D are studied. We find series solutions to the pertinent set of equations which are suitable for a late time descriptions in coo
We consider four-dimensional, Riemannian, Ricci-flat metrics for which one or other of the self-dual or anti-self-dual Weyl tensors is type-D. Such metrics always have a valence-2 Killing spinor, and therefore a Hermitian structure and at least one K
In this paper we investigate conformal symmetries in Locally Rotationally Symmetric (LRS) spacetimes using a semitetrad covariant formalism. We demonstrate that a general LRS spacetime which rotates and spatially twists simultaneously has an inherent
The covariant understanding of dispersion relations as level sets of Hamilton functions on phase space enables us to derive the most general dispersion relation compatible with homogeneous and isotropic spacetimes. We use this concept to present a Pl
We recast the well known Israel-Darmois matching conditions for Locally Rotationally Symmetric (LRS-II) spacetimes using the semitetrad 1+1+2 covariant formalism. This demonstrates how the geometrical quantities including the volume expansion, spacet