ﻻ يوجد ملخص باللغة العربية
We study the Bondi-Sachs rockets with nonzero cosmological constant. We observe that the acceleration of the systems arises naturally in the asymptotic symmetries of (anti-) de Sitter spacetimes. Assuming the validity of the concepts of energy and mass previously introduced in asymptotically flat spacetimes, we find that the emission of pure radiation energy balances the loss of the Bondi mass in certain special families of the Bondi-Sachs rockets, so in these there is no gravitational radiation.
The asymptotic properties of the solutions to the Einstein-Maxwell equations with boost-rotation symmetry and Petrov type D are studied. We find series solutions to the pertinent set of equations which are suitable for a late time descriptions in coo
A pseudo-Riemannian manifold is called CSI if all scalar polynomial invariants constructed from the curvature tensor and its covariant derivatives are constant. In the Lorentzian case, the CSI spacetimes have been studied extensively due to their app
We transform the metric of an isolated matter source in the multipolar post-Minkowskian approximation from harmonic (de Donder) coordinates to radiative Newman-Unti (NU) coordinates. To linearized order, we obtain the NU metric as a functional of the
We provide a detailed proof of Hawkings singularity theorem in the regularity class $C^{1,1}$, i.e., for spacetime metrics possessing locally Lipschitz continuous first derivatives. The proof uses recent results in $C^{1,1}$-causality theory and is b
In four dimensions, the most general metric admitting two Killing vectors and a rank-two Killing tensor can be parameterized by ten arbitrary functions of a single variable. We show that picking a special vierbien, reducing the system to eight functi