ﻻ يوجد ملخص باللغة العربية
We consider a characteristic initial value problem, with initial data given on a future null cone, for the Einstein (massless) scalar field system with a positive cosmological constant, in Bondi coordinates. We prove that, for small data, this system has a unique global classical solution which is causally geodesically complete to the future and decays polynomially in radius and exponentially in Bondi time, approaching the de Sitter solution.
We show that the spherically symmetric Einstein-scalar-field equations for wave-like decaying initial data at null infinity have unique global solutions in (0, infty) and unique generalized solutions on [0, infty) in the sense of Christodoulou. We emphasize that this decaying condition is sharp.
We studied spherically symmetric solutions in scalar-torsion gravity theories in which a scalar field is coupled to torsion with a derivative coupling. We obtained the general field equations from which we extracted a decoupled master equation, the s
We study spherically symmetric spacetimes in Einstein-aether theory in three different coordinate systems, the isotropic, Painlev`e-Gullstrand, and Schwarzschild coordinates, in which the aether is always comoving, and present both time-dependent and
We obtain the static spherically symmetric solutions of a class of gravitational models whose additions to the General Relativity (GR) action forbid Ricci-flat, in particular, Schwarzschild geometries. These theories are selected to maintain the (fir
We extend the monumental result of Christodoulou-Klainerman on the global nonlinear stability of the Minkowski spacetime to the global nonlinear stability of a class of large dispersive spacetimes. More precisely, we show that any regular future caus