ﻻ يوجد ملخص باللغة العربية
Electrical conduction is studied along parabolically confined quasi-one dimensional channels, in the framework of a revised linear-response theory, for elastic scattering. For zero magnetic field an explicit multichannel expression for the conductance is obtained that agrees with those of the literature. A similar but new multichannel expression is obtained in the presence of a magnetic field B||z perpendicular to the channel along the x axis. An explicit connection is made between the characteristic time for the tunnel-scattering process and the transmission and reflection coefficients that appear in either expression. As expected, for uncoupled channels the finite field expression gives the complete (Landauer-type) conductance of N parallel channels, a result that has not yet been reported in the literature. In addition, it accounts explicitly for the Hall field and the confining potential and is valid, with slight modifications, for tilted magnetic fields in the (x,z) plane.
We present results on electron transport in quasi-one dimensional (1D) quantum wires in GaAs/AlGaAs heterostructures obtained using an asymmetric confinement potential. The variation of the energy levels of the spatially quantized states is followed
We present a functional renormalization group calculation of the effect of strong interactions on the shape of the Fermi surface of weakly coupled metallic chains. In the regime where the bare interchain hopping is small, we show that scattering proc
Polymer nanofibers are one-dimensional organic hydrocarbon systems containing conducting polymers where the non-linear local excitations such as solitons, polarons and bipolarons formed by the electron-phonon interaction were predicted. Magnetoconduc
One-dimensional systems often possess multiple channels or bands arising from the excitation of transverse degrees of freedom. In the present work, we study the specific processes that dominate the equilibration of multi-channel Fermi gases at low te
The ballistic conductance through a device consisting of quantum wires, to which two stubs are attached laterally, is calculated assuming parabolic confining potentials of frequencies $omega_w$ for the wires and $omega_s$ for the stubs. As a function