ﻻ يوجد ملخص باللغة العربية
We present results on electron transport in quasi-one dimensional (1D) quantum wires in GaAs/AlGaAs heterostructures obtained using an asymmetric confinement potential. The variation of the energy levels of the spatially quantized states is followed from strong confinement through weak confinement to the onset of two-dimensionality. An anticrossing of the initial ground and first excited states is found as the asymmetry of the potential is varied giving rise to two anticrossing events which occur on either side of symmetric confinement. We present results analysing this behaviour and showing how it can be affected by the inhomogeneity in background potential. The use of an enhanced source-drain voltage to alter the energy levels is shown to be a significant validation of the analysis by showing the formation of double rows of electrons which correlate with the anticrossing.
Electrical conduction is studied along parabolically confined quasi-one dimensional channels, in the framework of a revised linear-response theory, for elastic scattering. For zero magnetic field an explicit multichannel expression for the conductanc
We present a functional renormalization group calculation of the effect of strong interactions on the shape of the Fermi surface of weakly coupled metallic chains. In the regime where the bare interchain hopping is small, we show that scattering proc
A quasi-exciton condensate is a phase characterized by quasi-long range order of an exciton (electron-hole pair) order parameter. Such a phase can arise naturally in a system of two parallel oppositely doped quantum wires, coupled by repulsive Coulom
The wavefunctions of a disordered two-dimensional electron gas at the quantum-critical Anderson transition are predicted to exhibit multifractal scaling in their real space amplitude. We experimentally investigate the appearance of these characterist
At low energy, electrons in doped graphene sheets behave like massless Dirac fermions with a Fermi velocity which does not depend on carrier density. Here we show that modulating a two-dimensional electron gas with a long-wavelength periodic potentia