ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Spin-Charge Relation by Magnetoconductance in One-Dimensional Polymer Nanofibers

112   0   0.0 ( 0 )
 نشر من قبل Yung Woo Park
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polymer nanofibers are one-dimensional organic hydrocarbon systems containing conducting polymers where the non-linear local excitations such as solitons, polarons and bipolarons formed by the electron-phonon interaction were predicted. Magnetoconductance (MC) can simultaneously probe both the spin and charge of these mobile species and identify the effects of electron-electron interactions on these nonlinear excitations. Here we report our observations of a qualitatively different MC in polyacetylene (PA) and in polyaniline (PANI) and polythiophene (PT) nanofibers. In PA the MC is essentially zero, but it is present in PANI and PT. The universal scaling behavior and the zero (finite) MC in PA (PANI and PT) nanofibers provide evidence of Coulomb interactions between spinless charged solitons (interacting polarons which carry both spin and charge).



قيم البحث

اقرأ أيضاً

69 - S. Guillon , 2002
Electrical conduction is studied along parabolically confined quasi-one dimensional channels, in the framework of a revised linear-response theory, for elastic scattering. For zero magnetic field an explicit multichannel expression for the conductanc e is obtained that agrees with those of the literature. A similar but new multichannel expression is obtained in the presence of a magnetic field B||z perpendicular to the channel along the x axis. An explicit connection is made between the characteristic time for the tunnel-scattering process and the transmission and reflection coefficients that appear in either expression. As expected, for uncoupled channels the finite field expression gives the complete (Landauer-type) conductance of N parallel channels, a result that has not yet been reported in the literature. In addition, it accounts explicitly for the Hall field and the confining potential and is valid, with slight modifications, for tilted magnetic fields in the (x,z) plane.
We identify theoretically the geometric phases of the electrons spin that can be detected in measurements of charge and spin transport through Aharonov-Bohm interferometers threaded by a magnetic flux $Phi$ (in units of the flux quantum) in which bot h the Rashba spin-orbit and Zeeman interactions are active. We show that the combined effect of these two interactions is to produce a $sin(Phi)$ [in addition to the usual $cos(Phi)$] dependence of the magnetoconductance, whose amplitude is proportional to the Zeeman field. Therefore the magnetoconductance, though an even function of the magnetic field is not a periodic function of it, and the widely-used concept of a phase shift in the Aharonov-Bohm oscillations, as indicated in previous work, is not applicable. We find the directions of the spin-polarizations in the system, and show that in general the spin currents are not conserved, implying the generation of magnetization in the terminals attached to the interferometer.
A general form of the Hamiltonian for electrons confined to a curved one-dimensional (1D) channel with spin-orbit coupling (SOC) linear in momentum is rederived and is applied to a U-shaped channel. Discretizing the derived continuous 1D Hamiltonian to a tight-binding version, the Landauer-Keldysh formalism (LKF) for nonequilibrium transport can be applied. Spin transport through the U-channel based on the LKF is compared with previous quantum mechanical approaches. The role of a curvature-induced geometric potential which was previously neglected in the literature of the ring issue is also revisited. Transport regimes between nonadiabatic, corresponding to weak SOC or sharp turn, and adiabatic, corresponding to strong SOC or smooth turn, is discussed. Based on the LKF, interesting charge and spin transport properties are further revealed. For the charge transport, the interplay between the Rashba and the linear Dresselhaus (001) SOCs leads to an additional modulation to the local charge density in the half-ring part of the U-channel, which is shown to originate from the angle-dependent spin-orbit potential. For the spin transport, theoretically predicted eigenstates of the Rashba rings, Dresselhaus rings, and the persistent spin-helix state are numerically tested by the present quantum transport calculation.
The study of exotic one-dimensional states, particularly those at the edges of topological materials, demand new experimental probes that can access the interplay between charge and spin degrees of freedom. One potential approach is to use a single s pin probe, such as a Nitrogen Vacancy center in diamond, which has recently emerged as a versatile tool to probe nanoscale systems in a non-invasive fashion. Here we present a theory describing how noise magnetometry with spin probes can directly address several questions that have emerged in experimental studies of 1D systems, including those in topological materials. We show that by controlling the spin degree of freedom of the probe, it is possible to measure locally and independently local charge and spin correlations of 1D systems. Visualization of 1D edge states, as well as sampling correlations with wavevector resolution can be achieved by tuning the probe-to-sample distance. Furthermore, temperature-dependent measurements of magnetic noise can clearly delineate the dominant scattering mechanism (impurities vs. interactions) -- this is of particular relevance to quantum spin Hall measurements where conductance quantization is not perfect. The possibility to probe both charge and spin excitations in a wide range of length scales opens new pathways to bridging the large gap between atomic scale resolution of scanning probes and global transport measurements.
77 - S. Varagnolo 2017
We report on a comprehensive study of the unique adhesive properties of mats of polymethylmethacrylate (PMMA) nanofibers produced by electrospinning. Fibers are deposited on glass, varying the diameter and the relative orientation of the polymer fila ments (random vs aligned configuration). While no significant variation is observed in the static contact angle (about 130{deg}) of deposited water drops upon changing the average fiber diameter up to the micrometer scale, fibers are found to exhibit unequalled water adhesion. Placed vertically, they can hold up water drops as large as 60 microL, more than twice the values typically obtained with hairy surfaces prepared by different methods. For aligned fibers with anisotropic wetting behavior, the maximum volume measured in the direction perpendicular to the fibers goes up to 90 {mu}L. This work suggests new routes to tailor the wetting behavior on extended areas by nanofiber coatings, with possible applications in adsorbing and catalytic surfaces, microfluidic devices, and filtration technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا