ﻻ يوجد ملخص باللغة العربية
The ballistic conductance through a device consisting of quantum wires, to which two stubs are attached laterally, is calculated assuming parabolic confining potentials of frequencies $omega_w$ for the wires and $omega_s$ for the stubs. As a function of the ratio $omega_w/omega_s$ the conductance shows nearly periodic minima associated with quasibound states forming in the stubbed region. Applying a magnetic field B normal to the plane of the device changes the symmetry of the wavefunctions with respect to the center of the wires and leads to new quasibound states in the stubs. The presence of the magnetic field can also lead to a second kind of state, trapped mainly in the wires by the corners of the confining potentials, that yields conductance minima as well. In either case, these bound states form for weak B and strong confining frequencies and thus are not edge states. Finally, we show experimental evidence for the presence of these quasi-bound states.
Electrical conduction is studied along parabolically confined quasi-one dimensional channels, in the framework of a revised linear-response theory, for elastic scattering. For zero magnetic field an explicit multichannel expression for the conductanc
We study how the shape of a periodic magnetic field affects the presence of Majorana bound states (MBS) in a nanowire-superconductor system. Motivated by the field configurations that can be produced by an array of nanomagnets, we consider spiral fie
We carry out an explicit calculation of the vacuum polarization tensor for an effective low-energy model of monolayer graphene in the presence of a weak magnetic field of intensity $B$ perpendicularly aligned to the membrane. By expanding the quasipa
In this minireview, we outline the recent experimental and theoretical progress in the creation, characterization and manipulation of Majorana bound states (MBSs) in semiconductor-superconductor (SC) hybrid structures. After an introductory overview
Skyrmions are emerging topological spin structures that are potentially revolutionary for future data storage and spintronics applications. The existence and stability of skyrmions in magnetic materials is usually associated to the presence of the Dz