ﻻ يوجد ملخص باللغة العربية
The Epidemic Type Aftershock Sequence (ETAS) model is one of the most widely-used approaches to seismic forecasting. However most studies of ETAS use point estimates for the model parameters, which ignores the inherent uncertainty that arises from estimating these from historical earthquake catalogs, resulting in misleadingly optimistic forecasts. In contrast, Bayesian statistics allows parameter uncertainty to be explicitly represented, and fed into the forecast distribution. Despite its growing popularity in seismology, the application of Bayesian statistics to the ETAS model has been limited by the complex nature of the resulting posterior distribution which makes it infeasible to apply on catalogs containing more than a few hundred earthquakes. To combat this, we develop a new framework for estimating the ETAS model in a fully Bayesian manner, which can be efficiently scaled up to large catalogs containing thousands of earthquakes. We also provide easy-to-use software which implements our method.
Identifying the most deprived regions of any country or city is key if policy makers are to design successful interventions. However, locating areas with the greatest need is often surprisingly challenging in developing countries. Due to the logistic
Dynamic Contrast-enhanced Magnetic Resonance Imaging (DCE-MRI) is an important tool for detecting subtle kinetic changes in cancerous tissue. Quantitative analysis of DCE-MRI typically involves the convolution of an arterial input function (AIF) with
In epidemiological modelling, the instantaneous reproduction number, $R_t$, is important to understand the transmission dynamics of infectious diseases. Current $R_t$ estimates often suffer from problems such as lagging, averaging and uncertainties d
A new method is proposed for estimating the rate of fugitive emissions of particulate matter from multiple time-dependent sources via measurements of deposition and concentration. We cast this source inversion problem within the Bayesian framework, a
In recent years, much of the focus in monitoring child mortality has been on assessing changes in the under-five mortality rate (U5MR). However, as the U5MR decreases, the share of neonatal deaths (within the first month) tends to increase, warrantin