ﻻ يوجد ملخص باللغة العربية
A new method is proposed for estimating the rate of fugitive emissions of particulate matter from multiple time-dependent sources via measurements of deposition and concentration. We cast this source inversion problem within the Bayesian framework, and use a forward model based on a Gaussian plume solution. We present three alternate models for constructing the prior distribution on the emission rates as functions of time. Next, we present an industrial case study in which our framework is applied to estimate the rate of fugitive emissions of lead particulates from a smelter in Trail, British Columbia, Canada. The Bayesian framework not only provides an approximate solution to the inverse problem, but also quantifies the uncertainty in the solution. Using this information we perform an uncertainty propagation study in order to assess the impact of the estimated sources on the area surrounding the industrial site.
In recent years, much of the focus in monitoring child mortality has been on assessing changes in the under-five mortality rate (U5MR). However, as the U5MR decreases, the share of neonatal deaths (within the first month) tends to increase, warrantin
The Epidemic Type Aftershock Sequence (ETAS) model is one of the most widely-used approaches to seismic forecasting. However most studies of ETAS use point estimates for the model parameters, which ignores the inherent uncertainty that arises from es
Bayesian analysis is a framework for parameter estimation that applies even in uncertainty regimes where the commonly used local (frequentist) analysis based on the Cramer-Rao bound is not well defined. In particular, it applies when no initial infor
We propose a numerical algorithm for solving the atmospheric dispersion problem with elevated point sources and ground-level deposition. The problem is modelled by the 3D advection-diffusion equation with delta-distribution source terms, as well as h
Accurately predicting the future health of batteries is necessary to ensure reliable operation, minimise maintenance costs, and calculate the value of energy storage investments. The complex nature of degradation renders data-driven approaches a prom