ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian estimation of airborne fugitive emissions using a Gaussian plume model

78   0   0.0 ( 0 )
 نشر من قبل Bamdad Hosseini Mr.
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

A new method is proposed for estimating the rate of fugitive emissions of particulate matter from multiple time-dependent sources via measurements of deposition and concentration. We cast this source inversion problem within the Bayesian framework, and use a forward model based on a Gaussian plume solution. We present three alternate models for constructing the prior distribution on the emission rates as functions of time. Next, we present an industrial case study in which our framework is applied to estimate the rate of fugitive emissions of lead particulates from a smelter in Trail, British Columbia, Canada. The Bayesian framework not only provides an approximate solution to the inverse problem, but also quantifies the uncertainty in the solution. Using this information we perform an uncertainty propagation study in order to assess the impact of the estimated sources on the area surrounding the industrial site.



قيم البحث

اقرأ أيضاً

In recent years, much of the focus in monitoring child mortality has been on assessing changes in the under-five mortality rate (U5MR). However, as the U5MR decreases, the share of neonatal deaths (within the first month) tends to increase, warrantin g increased efforts in monitoring this indicator in addition to the U5MR. A Bayesian splines regression model is presented for estimating neonatal mortality rates (NMR) for all countries. In the model, the relationship between NMR and U5MR is assessed and used to inform estimates, and spline regression models are used to capture country-specific trends. As such, the resulting NMR estimates incorporate trends in overall child mortality while also capturing data-driven trends. The model is fitted to 195 countries using the database from the United Nations Interagency Group for Child Mortality Estimation, producing estimates from 1990, or earlier if data are available, until 2015. The results suggest that, above a U5MR of 34 deaths per 1000 live births, at the global level, a 1 per cent increase in the U5MR leads to a 0.6 per cent decrease in the ratio of NMR to U5MR. Below a U5MR of 34 deaths per 1000 live births, the proportion of deaths under-five that are neonatal is constant at around 54 per cent. However, the relationship between U5MR and NMR varies across countries. The model has now been adopted by the United Nations Inter-agency Group for Child Mortality Estimation.
318 - Gordon J Ross 2021
The Epidemic Type Aftershock Sequence (ETAS) model is one of the most widely-used approaches to seismic forecasting. However most studies of ETAS use point estimates for the model parameters, which ignores the inherent uncertainty that arises from es timating these from historical earthquake catalogs, resulting in misleadingly optimistic forecasts. In contrast, Bayesian statistics allows parameter uncertainty to be explicitly represented, and fed into the forecast distribution. Despite its growing popularity in seismology, the application of Bayesian statistics to the ETAS model has been limited by the complex nature of the resulting posterior distribution which makes it infeasible to apply on catalogs containing more than a few hundred earthquakes. To combat this, we develop a new framework for estimating the ETAS model in a fully Bayesian manner, which can be efficiently scaled up to large catalogs containing thousands of earthquakes. We also provide easy-to-use software which implements our method.
Bayesian analysis is a framework for parameter estimation that applies even in uncertainty regimes where the commonly used local (frequentist) analysis based on the Cramer-Rao bound is not well defined. In particular, it applies when no initial infor mation about the parameter value is available, e.g., when few measurements are performed. Here, we consider three paradigmatic estimation schemes in continuous-variable quantum metrology (estimation of displacements, phases, and squeezing strengths) and analyse them from the Bayesian perspective. For each of these scenarios, we investigate the precision achievable with single-mode Gaussian states under homodyne and heterodyne detection. This allows us to identify Bayesian estimation strategies that combine good performance with the potential for straightforward experimental realization in terms of Gaussian states and measurements. Our results provide practical solutions for reaching uncertainties where local estimation techniques apply, thus bridging the gap to regimes where asymptotically optimal strategies can be employed.
We propose a numerical algorithm for solving the atmospheric dispersion problem with elevated point sources and ground-level deposition. The problem is modelled by the 3D advection-diffusion equation with delta-distribution source terms, as well as h eight-dependent advection speed and diffusion coefficients. We construct a finite volume scheme using a splitting approach in which the Clawpack software package is used as the advection solver and an implicit time discretization is proposed for the diffusion terms. The algorithm is then applied to an actual industrial scenario involving emissions of airborne particulates from a zinc smelter using actual wind measurements. We also address various practical considerations such as choosing appropriate methods for regularizing noisy wind data and quantifying sensitivity of the model to parameter uncertainty. Afterwards, we use the algorithm within a Bayesian framework for estimating emission rates of zinc from multiple sources over the industrial site. We compare our finite volume solver with a Gaussian plume solver within the Bayesian framework and demonstrate that the finite volume solver results in tighter uncertainty bounds on the estimated emission rates.
Accurately predicting the future health of batteries is necessary to ensure reliable operation, minimise maintenance costs, and calculate the value of energy storage investments. The complex nature of degradation renders data-driven approaches a prom ising alternative to mechanistic modelling. This study predicts the changes in battery capacity over time using a Bayesian non-parametric approach based on Gaussian process regression. These changes can be integrated against an arbitrary input sequence to predict capacity fade in a variety of usage scenarios, forming a generalised health model. The approach naturally incorporates varying current, voltage and temperature inputs, crucial for enabling real world application. A key innovation is the feature selection step, where arbitrary length current, voltage and temperature measurement vectors are mapped to fixed size feature vectors, enabling them to be efficiently used as exogenous variables. The approach is demonstrated on the open-source NASA Randomised Battery Usage Dataset, with data of 26 cells aged under randomized operational conditions. Using half of the cells for training, and half for validation, the method is shown to accurately predict non-linear capacity fade, with a best case normalised root mean square error of 4.3%, including accurate estimation of prediction uncertainty.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا