ترغب بنشر مسار تعليمي؟ اضغط هنا

The Bayesian Spatial Bradley--Terry Model: Urban Deprivation Modeling in Tanzania

184   0   0.0 ( 0 )
 نشر من قبل Rowland Seymour
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Identifying the most deprived regions of any country or city is key if policy makers are to design successful interventions. However, locating areas with the greatest need is often surprisingly challenging in developing countries. Due to the logistical challenges of traditional household surveying, official statistics can be slow to be updated; estimates that exist can be coarse, a consequence of prohibitive costs and poor infrastructures; and mass urbanisation can render manually surveyed figures rapidly out-of-date. Comparative judgement models, such as the Bradley--Terry model, offer a promising solution. Leveraging local knowledge, elicited via comparisons of different areas affluence, such models can both simplify logistics and circumvent biases inherent to house-hold surveys. Yet widespread adoption remains limited, due to the large amount of data existing approaches still require. We address this via development of a novel Bayesian Spatial Bradley--Terry model, which substantially decreases the amount of data comparisons required for effective inference. This model integrates a network representation of the city or country, along with assumptions of spatial smoothness that allow deprivation in one area to be informed by neighbouring areas. We demonstrate the practical effectiveness of this method, through a novel comparative judgement data set collected in Dar es Salaam, Tanzania.



قيم البحث

اقرأ أيضاً

A common problem faced in statistical inference is drawing conclusions from paired comparisons, in which two objects compete and one is declared the victor. A probabilistic approach to such a problem is the Bradley-Terry model, first studied by Zerme lo in 1929 and rediscovered by Bradley and Terry in 1952. One obvious area of application for such a model is sporting events, and in particular Major League Baseball. With this in mind, we describe a hierarchical Bayesian version of Bradley-Terry suitable for use in ranking and prediction problems, and compare results from these application domains to standard maximum likelihood approaches. Our Bayesian methods outperform the MLE-based analogues, while being simple to construct, implement, and interpret.
201 - John T. Whelan , Adam Wodon 2020
We describe the application of the Bradley-Terry model to NCAA Division I Mens Ice Hockey. A Bayesian construction gives a joint posterior probability distribution for the log-strength parameters, given a set of game results and a choice of prior dis tribution. For several suitable choices of prior, it is straightforward to find the maximum a posteriori point (MAP) and a Hessian matrix, allowing a Gaussian approximation to be constructed. Posterior predictive probabilities can be estimated by 1) setting the log-strengths to their MAP values, 2) using the Gaussian approximation for analytical or Monte Carlo integration, or 3) applying importance sampling to re-weight the results of a Monte Carlo simulation. We define a method to evaluate any models which generate predicted probabilities for future outcomes, using the Bayes factor given the actual outcomes, and apply it to NCAA tournament results. Finally, we describe an on-line tool which currently estimates probabilities of future results using MAP evaluation and describe how it can be refined using the Gaussian approximation or importance sampling.
We propose a time-varying generalization of the Bradley-Terry model that allows for nonparametric modeling of dynamic global rankings of distinct teams. We develop a novel estimator that relies on kernel smoothing to pre-process the pairwise comparis ons over time and is applicable in sparse settings where the Bradley-Terry may not be fit. We obtain necessary and sufficient conditions for the existence and uniqueness of our estimator. We also derive time-varying oracle bounds for both the estimation error and the excess risk in the model-agnostic setting where the Bradley-Terry model is not necessarily the true data generating process. We thoroughly test the practical effectiveness of our model using both simulated and real world data and suggest an efficient data-driven approach for bandwidth tuning.
Infectious diseases on farms pose both public and animal health risks, so understanding how they spread between farms is crucial for developing disease control strategies to prevent future outbreaks. We develop novel Bayesian nonparametric methodolog y to fit spatial stochastic transmission models in which the infection rate between any two farms is a function that depends on the distance between them, but without assuming a specified parametric form. Making nonparametric inference in this context is challenging since the likelihood function of the observed data is intractable because the underlying transmission process is unobserved. We adopt a fully Bayesian approach by assigning a transformed Gaussian Process prior distribution to the infection rate function, and then develop an efficient data augmentation Markov Chain Monte Carlo algorithm to perform Bayesian inference. We use the posterior predictive distribution to simulate the effect of different disease control methods and their economic impact. We analyse a large outbreak of Avian Influenza in the Netherlands and infer the between-farm infection rate, as well as the unknown infection status of farms which were pre-emptively culled. We use our results to analyse ring-culling strategies, and conclude that although effective, ring-culling has limited impact in high density areas.
The equations of a physical constitutive model for material stress within tantalum grains were solved numerically using a tetrahedrally meshed volume. The resulting output included a scalar vonMises stress for each of the more than 94,000 tetrahedra within the finite element discretization. In this paper, we define an intricate statistical model for the spatial field of vonMises stress which uses the given grain geometry in a fundamental way. Our model relates the three-dimensional field to integrals of latent stochastic processes defined on the vertices of the one- and two-dimensional grain boundaries. An intuitive neighborhood structure of said boundary nodes suggested the use of a latent Gaussian Markov random field (GMRF). However, despite the potential for computational gains afforded by GMRFs, the integral nature of our model and the sheer number of data points pose substantial challenges for a full Bayesian analysis. To overcome these problems and encourage efficient exploration of the posterior distribution, a number of techniques are now combined: parallel computing, sparse matrix methods, and a modification of a block update strategy within the sampling routine. In addition, we use an auxiliary variables approach to accommodate the presence of outliers in the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا