ترغب بنشر مسار تعليمي؟ اضغط هنا

Reverse Order Law for Generalized Inverses with Indefinite Hermitian Weights

101   0   0.0 ( 0 )
 نشر من قبل P Sam Johnson
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, necessary and sufficient conditions are given for the existence of Moore-Penrose inverse of a product of two matrices in an indefinite inner product space (IIPS) in which reverse order law holds good. Rank equivalence formulas with respect to IIPS are provided and an open problem is given at the end.



قيم البحث

اقرأ أيضاً

164 - Jianbing Cao , Yifeng Xue 2013
In this paper, we first study the perturbations and expressions for the generalized inverses $a^{(2)}_{p,q}$, $a^{(1, 2)}_{p,q}$, $a^{(2, l)}_{p,q}$ and $a^{(l)}_{p,q}$ with prescribed idempotents $p$ and $q$. Then, we investigate the general perturb ation analysis and error estimate for some of these generalized inverses when $p,,q$ and $a$ also have some small perturbations.
We provide an extension operator for weighted Sobolev spaces on bounded polyhedral cones $K$ involving a mixture of weights, which measure the distance to the vertex and the edges of the cone, respectively. Our results are based on Steins extension operator for Sobolev spaces.
In this expository article we introduce a diagrammatic scheme to represent reverse classes of weights and some of their properties.
In this paper, we introduce two new generalized inverses of matrices, namely, the $bra{i}{m}$-core inverse and the $pare{j}{m}$-core inverse. The $bra{i}{m}$-core inverse of a complex matrix extends the notions of the core inverse defined by Baksalar y and Trenkler cite{BT} and the core-EP inverse defined by Manjunatha Prasad and Mohana cite{MM}. The $pare{j}{m}$-core inverse of a complex matrix extends the notions of the core inverse and the ${rm DMP}$-inverse defined by Malik and Thome cite{MT}. Moreover, the formulae and properties of these two new concepts are investigated by using matrix decompositions and matrix powers.
162 - Jianbing Cao , Yifeng Xue 2013
In this paper, the problems of perturbation and expression for the Moore--Penrose metric generalized inverses of bounded linear operators on Banach spaces are further studied. By means of certain geometric assumptions of Banach spaces, we first give some equivalent conditions for the Moore--Penrose metric generalized inverse of perturbed operator to have the simplest expression $T^M(I+ delta TT^M)^{-1}$. Then, as an application our results, we investigate the stability of some operator equations in Banach spaces under different type perturbations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا