ترغب بنشر مسار تعليمي؟ اضغط هنا

Perturbation analysis for the generalized inverses with prescribed idempotents in Banach algebras

164   0   0.0 ( 0 )
 نشر من قبل Yifeng Xue
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we first study the perturbations and expressions for the generalized inverses $a^{(2)}_{p,q}$, $a^{(1, 2)}_{p,q}$, $a^{(2, l)}_{p,q}$ and $a^{(l)}_{p,q}$ with prescribed idempotents $p$ and $q$. Then, we investigate the general perturbation analysis and error estimate for some of these generalized inverses when $p,,q$ and $a$ also have some small perturbations.



قيم البحث

اقرأ أيضاً

162 - Jianbing Cao , Yifeng Xue 2013
In this paper, the problems of perturbation and expression for the Moore--Penrose metric generalized inverses of bounded linear operators on Banach spaces are further studied. By means of certain geometric assumptions of Banach spaces, we first give some equivalent conditions for the Moore--Penrose metric generalized inverse of perturbed operator to have the simplest expression $T^M(I+ delta TT^M)^{-1}$. Then, as an application our results, we investigate the stability of some operator equations in Banach spaces under different type perturbations.
126 - Nico Spronk 2015
We determine when contractive idempotents in the measure algebra of a locally compact group commute. We consider a dynamical version of the same result. We also look at some properties of groups of measures whose identity is a contactive idempotent.
135 - Fapeng Du , Yifeng Xue 2013
In this paper, we investigate the perturbation for the Moore-Penrose inverse of closed operators on Hilbert spaces. By virtue of a new inner product defined on $H$, we give the expression of the Moore-Penrose inverse $bar{T}^dag$ and the upper bounds of $|bar{T}^dag|$ and $|bar{T}^dag -T^dag|$. These results obtained in this paper extend and improve many related results in this area.
In this paper, necessary and sufficient conditions are given for the existence of Moore-Penrose inverse of a product of two matrices in an indefinite inner product space (IIPS) in which reverse order law holds good. Rank equivalence formulas with res pect to IIPS are provided and an open problem is given at the end.
160 - Rongwei Yang 2008
For a tuple $A=(A_0, A_1, ..., A_n)$ of elements in a unital Banach algebra ${mathcal B}$, its {em projective spectrum} $p(A)$ is defined to be the collection of $z=[z_0, z_1, ..., z_n]in pn$ such that $A(z)=z_0A_0+z_1A_1+... +z_nA_n$ is not invertib le in ${mathcal B}$. The pre-image of $p(A)$ in ${cc}^{n+1}$ is denoted by $P(A)$. When ${mathcal B}$ is the $ktimes k$ matrix algebra $M_k(cc)$, the projective spectrum is a projective hypersurface. In infinite dimensional cases, projective spectrums can be very complicated, but also have some properties similar to that of hypersurfaces. When $A$ is commutative, $P(A)$ is a union of hyperplanes. When ${mathcal B}$ is reflexive or is a $C^*$-algebra, the {em projective resolvent set} $P^c(A):=cc^{n+1}setminus P(A)$ is shown to be a disjoint union of domains of holomorphy. Later part of this paper studies Maurer-Cartan type ${mathcal B}$-valued 1-form $A^{-1}(z)dA(z)$ on $P^c(A)$. As a consequence, we show that if ${mathcal B}$ is a $C^*$-algebra with a trace $phi$, then $phi(A^{-1}(z)dA(z))$ is a nontrivial element in the de Rham cohomology space $H^1_d(P^c(A), cc)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا