ترغب بنشر مسار تعليمي؟ اضغط هنا

An extension operator for Sobolev spaces with mixed weights

130   0   0.0 ( 0 )
 نشر من قبل Fl\\'ora Orsolya Szemenyei
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide an extension operator for weighted Sobolev spaces on bounded polyhedral cones $K$ involving a mixture of weights, which measure the distance to the vertex and the edges of the cone, respectively. Our results are based on Steins extension operator for Sobolev spaces.



قيم البحث

اقرأ أيضاً

We show that every $mathbb{R}^d$-valued Sobolev path with regularity $alpha$ and integrability $p$ can be lifted to a Sobolev rough path in the sense of T. Lyons provided $alpha >1/p>0$. Moreover, we prove the existence of unique rough path lifts whi ch are optimal w.r.t. strictly convex functionals among all possible rough path lifts given a Sobolev path. As examples, we consider the rough path lift with minimal Sobolev norm and characterize the Stratonovich rough path lift of a Brownian motion as optimal lift w.r.t. to a suitable convex functional. Generalizations of the results to Besov spaces are briefly discussed.
95 - Zheng Zhu 2021
In this paper, we study the Sobolev extension property of Lp-quasidisks which are the generalizations of the classical quasidisks. After that, we also find some applications of their Sobolev extension property.
We study the embeddings of (homogeneous and inhomogeneous) anisotropic Besov spaces associated to an expansive matrix $A$ into Sobolev spaces, with focus on the influence of $A$ on the embedding behaviour. For a large range of parameters, we derive sharp characterizations of embeddings.
197 - Tian Liang 2020
In this paper we build up a criteria for fractional Orlicz-Sobolev extension and imbedding domains on Ahlfors $n$-regular domains.
We characterize the symbols $Phi$ for which there exists a weight w such that the weighted composition operator M w C $Phi$ is compact on the weighted Bergman space B 2 $alpha$. We also characterize the symbols for which there exists a weight w such that M w C $Phi$ is bounded but not compact. We also investigate when there exists w such that M w C $Phi$ is Hilbert-Schmidt on B 2 $alpha$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا