ﻻ يوجد ملخص باللغة العربية
Thanks to the rapid growth in wearable technologies, monitoring complex human context becomes feasible, paving the way to develop human-in-the-loop IoT systems that naturally evolve to adapt to the human and environment state autonomously. Nevertheless, a central challenge in designing such personalized IoT applications arises from human variability. Such variability stems from the fact that different humans exhibit different behaviors when interacting with IoT applications (intra-human variability), the same human may change the behavior over time when interacting with the same IoT application (inter-human variability), and human behavior may be affected by the behaviors of other people in the same environment (multi-human variability). To that end, we propose FaiR-IoT, a general reinforcement learning-based framework for adaptive and fairness-aware human-in-the-loop IoT applications. In FaiR-IoT, three levels of reinforcement learning agents interact to continuously learn human preferences and maximize the systems performance and fairness while taking into account the intra-, inter-, and multi-human variability. We validate the proposed framework on two applications, namely (i) Human-in-the-Loop Automotive Advanced Driver Assistance Systems and (ii) Human-in-the-Loop Smart House. Results obtained on these two applications validate the generality of FaiR-IoT and its ability to provide a personalized experience while enhancing the systems performance by 40%-60% compared to non-personalized systems and enhancing the fairness of the multi-human systems by 1.5 orders of magnitude.
Providing Reinforcement Learning agents with expert advice can dramatically improve various aspects of learning. Prior work has developed teaching protocols that enable agents to learn efficiently in complex environments; many of these methods tailor
Our life is getting filled by Internet of Things (IoT) devices. These devices often rely on closed or poorly documented protocols, with unknown formats and semantics. Learning how to interact with such devices in an autonomous manner is the key for i
Providing reinforcement learning agents with informationally rich human knowledge can dramatically improve various aspects of learning. Prior work has developed different kinds of shaping methods that enable agents to learn efficiently in complex env
Life-threatening ventricular arrhythmias (VA) are the leading cause of sudden cardiac death (SCD), which is the most significant cause of natural death in the US. The implantable cardioverter defibrillator (ICD) is a small device implanted to patient
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for comp