ترغب بنشر مسار تعليمي؟ اضغط هنا

RL-IoT: Reinforcement Learning to Interact with IoT Devices

130   0   0.0 ( 0 )
 نشر من قبل Giulia Milan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Our life is getting filled by Internet of Things (IoT) devices. These devices often rely on closed or poorly documented protocols, with unknown formats and semantics. Learning how to interact with such devices in an autonomous manner is the key for interoperability and automatic verification of their capabilities. In this paper, we propose RL-IoT, a system that explores how to automatically interact with possibly unknown IoT devices. We leverage reinforcement learning (RL) to recover the semantics of protocol messages and to take control of the device to reach a given goal, while minimizing the number of interactions. We assume to know only a database of possible IoT protocol messages, whose semantics are however unknown. RL-IoT exchanges messages with the target IoT device, learning those commands that are useful to reach the given goal. Our results show that RL-IoT is able to solve both simple and complex tasks. With properly tuned parameters, RL-IoT learns how to perform actions with the target device, a Yeelight smart bulb in our case study, completing non-trivial patterns with as few as 400 interactions. RL-IoT paves the road for automatic interactions with poorly documented IoT protocols, thus enabling interoperable systems.



قيم البحث

اقرأ أيضاً

The Internet of Things (IoT) revolution has shown potential to give rise to many medical applications with access to large volumes of healthcare data collected by IoT devices. However, the increasing demand for healthcare data privacy and security ma kes each IoT device an isolated island of data. Further, the limited computation and communication capacity of wearable healthcare devices restrict the application of vanilla federated learning. To this end, we propose an advanced federated learning framework to train deep neural networks, where the network is partitioned and allocated to IoT devices and a centralized server. Then most of the training computation is handled by the powerful server. The sparsification of activations and gradients significantly reduces the communication overhead. Empirical study have suggested that the proposed framework guarantees a low accuracy loss, while only requiring 0.2% of the synchronization traffic in vanilla federated learning.
Safety remains a central obstacle preventing widespread use of RL in the real world: learning new tasks in uncertain environments requires extensive exploration, but safety requires limiting exploration. We propose Recovery RL, an algorithm which nav igates this tradeoff by (1) leveraging offline data to learn about constraint violating zones before policy learning and (2) separating the goals of improving task performance and constraint satisfaction across two policies: a task policy that only optimizes the task reward and a recovery policy that guides the agent to safety when constraint violation is likely. We evaluate Recovery RL on 6 simulation domains, including two contact-rich manipulation tasks and an image-based navigation task, and an image-based obstacle avoidance task on a physical robot. We compare Recovery RL to 5 prior safe RL methods which jointly optimize for task performance and safety via constrained optimization or reward shaping and find that Recovery RL outperforms the next best prior method across all domains. Results suggest that Recovery RL trades off constraint violations and task successes 2 - 20 times more efficiently in simulation domains and 3 times more efficiently in physical experiments. See https://tinyurl.com/rl-recovery for videos and supplementary material.
Internet of Things (IoT) devices are becoming increasingly popular and are influencing many application domains such as healthcare and transportation. These devices are used for real-world applications such as sensor monitoring, real-time control. In this work, we look at differentially private (DP) neural network (NN) based network intrusion detection systems (NIDS) to detect intrusion attacks on networks of such IoT devices. Existing NN training solutions in this domain either ignore privacy considerations or assume that the privacy requirements are homogeneous across all users. We show that the performance of existing differentially private stochastic methods degrade for clients with non-identical data distributions when clients privacy requirements are heterogeneous. We define a cohort-based $(epsilon,delta)$-DP framework that models the more practical setting of IoT device cohorts with non-identical clients and heterogeneous privacy requirements. We propose two novel continual-learning based DP training methods that are designed to improve model performance in the aforementioned setting. To the best of our knowledge, ours is the first system that employs a continual learning-based approach to handle heterogeneity in client privacy requirements. We evaluate our approach on real datasets and show that our techniques outperform the baselines. We also show that our methods are robust to hyperparameter changes. Lastly, we show that one of our proposed methods can easily adapt to post-hoc relaxations of client privacy requirements.
75 - Salma Elmalaki 2021
Thanks to the rapid growth in wearable technologies, monitoring complex human context becomes feasible, paving the way to develop human-in-the-loop IoT systems that naturally evolve to adapt to the human and environment state autonomously. Neverthele ss, a central challenge in designing such personalized IoT applications arises from human variability. Such variability stems from the fact that different humans exhibit different behaviors when interacting with IoT applications (intra-human variability), the same human may change the behavior over time when interacting with the same IoT application (inter-human variability), and human behavior may be affected by the behaviors of other people in the same environment (multi-human variability). To that end, we propose FaiR-IoT, a general reinforcement learning-based framework for adaptive and fairness-aware human-in-the-loop IoT applications. In FaiR-IoT, three levels of reinforcement learning agents interact to continuously learn human preferences and maximize the systems performance and fairness while taking into account the intra-, inter-, and multi-human variability. We validate the proposed framework on two applications, namely (i) Human-in-the-Loop Automotive Advanced Driver Assistance Systems and (ii) Human-in-the-Loop Smart House. Results obtained on these two applications validate the generality of FaiR-IoT and its ability to provide a personalized experience while enhancing the systems performance by 40%-60% compared to non-personalized systems and enhancing the fairness of the multi-human systems by 1.5 orders of magnitude.
The growing use of IoT devices in organizations has increased the number of attack vectors available to attackers due to the less secure nature of the devices. The widely adopted bring your own device (BYOD) policy which allows an employee to bring a ny IoT device into the workplace and attach it to an organizations network also increases the risk of attacks. In order to address this threat, organizations often implement security policies in which only the connection of white-listed IoT devices is permitted. To monitor adherence to such policies and protect their networks, organizations must be able to identify the IoT devices connected to their networks and, more specifically, to identify connected IoT devices that are not on the white-list (unknown devices). In this study, we applied deep learning on network traffic to automatically identify IoT devices connected to the network. In contrast to previous work, our approach does not require that complex feature engineering be applied on the network traffic, since we represent the communication behavior of IoT devices using small images built from the IoT devices network traffic payloads. In our experiments, we trained a multiclass classifier on a publicly available dataset, successfully identifying 10 different IoT devices and the traffic of smartphones and computers, with over 99% accuracy. We also trained multiclass classifiers to detect unauthorized IoT devices connected to the network, achieving over 99% overall average detection accuracy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا