ترغب بنشر مسار تعليمي؟ اضغط هنا

Agent-Agnostic Human-in-the-Loop Reinforcement Learning

378   0   0.0 ( 0 )
 نشر من قبل David Abel
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Providing Reinforcement Learning agents with expert advice can dramatically improve various aspects of learning. Prior work has developed teaching protocols that enable agents to learn efficiently in complex environments; many of these methods tailor the teachers guidance to agents with a particular representation or underlying learning scheme, offering effective but specialized teaching procedures. In this work, we explore protocol programs, an agent-agnostic schema for Human-in-the-Loop Reinforcement Learning. Our goal is to incorporate the beneficial properties of a human teacher into Reinforcement Learning without making strong assumptions about the inner workings of the agent. We show how to represent existing approaches such as action pruning, reward shaping, and training in simulation as special cases of our schema and conduct preliminary experiments on simple domains.



قيم البحث

اقرأ أيضاً

Providing reinforcement learning agents with informationally rich human knowledge can dramatically improve various aspects of learning. Prior work has developed different kinds of shaping methods that enable agents to learn efficiently in complex env ironments. All these methods, however, tailor human guidance to agents in specialized shaping procedures, thus embodying various characteristics and advantages in different domains. In this paper, we investigate the interplay between different shaping methods for more robust learning performance. We propose an adaptive shaping algorithm which is capable of learning the most suitable shaping method in an on-line manner. Results in two classic domains verify its effectiveness from both simulated and real human studies, shedding some light on the role and impact of human factors in human-robot collaborative learning.
Object-centric representations have recently enabled significant progress in tackling relational reasoning tasks. By building a strong object-centric inductive bias into neural architectures, recent efforts have improved generalization and data effic iency of machine learning algorithms for these problems. One problem class involving relational reasoning that still remains under-explored is multi-agent reinforcement learning (MARL). Here we investigate whether object-centric representations are also beneficial in the fully cooperative MARL setting. Specifically, we study two ways of incorporating an agent-centric inductive bias into our RL algorithm: 1. Introducing an agent-centric attention module with explicit connections across agents 2. Adding an agent-centric unsupervised predictive objective (i.e. not using action labels), to be used as an auxiliary loss for MARL, or as the basis of a pre-training step. We evaluate these approaches on the Google Research Football environment as well as DeepMind Lab 2D. Empirically, agent-centric representation learning leads to the emergence of more complex cooperation strategies between agents as well as enhanced sample efficiency and generalization.
We present the Battlesnake Challenge, a framework for multi-agent reinforcement learning with Human-In-the-Loop Learning (HILL). It is developed upon Battlesnake, a multiplayer extension of the traditional Snake game in which 2 or more snakes compete for the final survival. The Battlesnake Challenge consists of an offline module for model training and an online module for live competitions. We develop a simulated game environment for the offline multi-agent model training and identify a set of baseline heuristics that can be instilled to improve learning. Our framework is agent-agnostic and heuristics-agnostic such that researchers can design their own algorithms, train their models, and demonstrate in the online Battlesnake competition. We validate the framework and baseline heuristics with our preliminary experiments. Our results show that agents with the proposed HILL methods consistently outperform agents without HILL. Besides, heuristics of reward manipulation had the best performance in the online competition. We open source our framework at https://github.com/awslabs/sagemaker-battlesnake-ai.
Reinforcement learning competitions have formed the basis for standard research benchmarks, galvanized advances in the state-of-the-art, and shaped the direction of the field. Despite this, a majority of challenges suffer from the same fundamental pr oblems: participant solutions to the posed challenge are usually domain-specific, biased to maximally exploit compute resources, and not guaranteed to be reproducible. In this paper, we present a new framework of competition design that promotes the development of algorithms that overcome these barriers. We propose four central mechanisms for achieving this end: submission retraining, domain randomization, desemantization through domain obfuscation, and the limitation of competition compute and environment-sample budget. To demonstrate the efficacy of this design, we proposed, organized, and ran the MineRL 2020 Competition on Sample-Efficient Reinforcement Learning. In this work, we describe the organizational outcomes of the competition and show that the resulting participant submissions are reproducible, non-specific to the competition environment, and sample/resource efficient, despite the difficult competition task.
Social learning is a key component of human and animal intelligence. By taking cues from the behavior of experts in their environment, social learners can acquire sophisticated behavior and rapidly adapt to new circumstances. This paper investigates whether independent reinforcement learning (RL) agents in a multi-agent environment can learn to use social learning to improve their performance. We find that in most circumstances, vanilla model-free RL agents do not use social learning. We analyze the reasons for this deficiency, and show that by imposing constraints on the training environment and introducing a model-based auxiliary loss we are able to obtain generalized social learning policies which enable agents to: i) discover complex skills that are not learned from single-agent training, and ii) adapt online to novel environments by taking cues from experts present in the new environment. In contrast, agents trained with model-free RL or imitation learning generalize poorly and do not succeed in the transfer tasks. By mixing multi-agent and solo training, we can obtain agents that use social learning to gain skills that they can deploy when alone, even out-performing agents trained alone from the start.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا