ترغب بنشر مسار تعليمي؟ اضغط هنا

A Survey of Human-in-the-loop for Machine Learning

94   0   0.0 ( 0 )
 نشر من قبل XingJiao Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.



قيم البحث

اقرأ أيضاً

Providing Reinforcement Learning agents with expert advice can dramatically improve various aspects of learning. Prior work has developed teaching protocols that enable agents to learn efficiently in complex environments; many of these methods tailor the teachers guidance to agents with a particular representation or underlying learning scheme, offering effective but specialized teaching procedures. In this work, we explore protocol programs, an agent-agnostic schema for Human-in-the-Loop Reinforcement Learning. Our goal is to incorporate the beneficial properties of a human teacher into Reinforcement Learning without making strong assumptions about the inner workings of the agent. We show how to represent existing approaches such as action pruning, reward shaping, and training in simulation as special cases of our schema and conduct preliminary experiments on simple domains.
The study of human mobility is crucial due to its impact on several aspects of our society, such as disease spreading, urban planning, well-being, pollution, and more. The proliferation of digital mobility data, such as phone records, GPS traces, and social media posts, combined with the predictive power of artificial intelligence, triggered the application of deep learning to human mobility. Existing surveys focus on single tasks, data sources, mechanistic or traditional machine learning approaches, while a comprehensive description of deep learning solutions is missing. This survey provides a taxonomy of mobility tasks, a discussion on the challenges related to each task and how deep learning may overcome the limitations of traditional models, a description of the most relevant solutions to the mobility tasks described above and the relevant challenges for the future. Our survey is a guide to the leading deep learning solutions to next-location prediction, crowd flow prediction, trajectory generation, and flow generation. At the same time, it helps deep learning scientists and practitioners understand the fundamental concepts and the open challenges of the study of human mobility.
In the field of reproductive health, a vital aspect for the detection of male fertility issues is the analysis of human semen quality. Two factors of importance are the morphology and motility of the sperm cells. While the former describes defects in different parts of a spermatozoon, the latter measures the efficient movement of cells. For many non-human species, so-called Computer-Aided Sperm Analysis systems work well for assessing these characteristics from microscopic video recordings but struggle with human sperm samples which generally show higher degrees of debris and dead spermatozoa, as well as lower overall sperm motility. Here, machine learning methods that harness large amounts of training data to extract salient features could support physicians with the detection of fertility issues or in vitro fertilisation procedures. In this work, the overall motility of given sperm samples is predicted with the help of a machine learning framework integrating unsupervised methods for feature extraction with downstream regression models. The models evaluated herein improve on the state-of-the-art for video-based sperm-motility prediction.
75 - Salma Elmalaki 2021
Thanks to the rapid growth in wearable technologies, monitoring complex human context becomes feasible, paving the way to develop human-in-the-loop IoT systems that naturally evolve to adapt to the human and environment state autonomously. Neverthele ss, a central challenge in designing such personalized IoT applications arises from human variability. Such variability stems from the fact that different humans exhibit different behaviors when interacting with IoT applications (intra-human variability), the same human may change the behavior over time when interacting with the same IoT application (inter-human variability), and human behavior may be affected by the behaviors of other people in the same environment (multi-human variability). To that end, we propose FaiR-IoT, a general reinforcement learning-based framework for adaptive and fairness-aware human-in-the-loop IoT applications. In FaiR-IoT, three levels of reinforcement learning agents interact to continuously learn human preferences and maximize the systems performance and fairness while taking into account the intra-, inter-, and multi-human variability. We validate the proposed framework on two applications, namely (i) Human-in-the-Loop Automotive Advanced Driver Assistance Systems and (ii) Human-in-the-Loop Smart House. Results obtained on these two applications validate the generality of FaiR-IoT and its ability to provide a personalized experience while enhancing the systems performance by 40%-60% compared to non-personalized systems and enhancing the fairness of the multi-human systems by 1.5 orders of magnitude.
Machine learning has recently been widely adopted to address the managerial decision making problems, in which the decision maker needs to be able to interpret the contributions of individual attributes in an explicit form. However, there is a trade- off between performance and interpretability. Full complexity models are non-traceable black-box, whereas classic interpretable models are usually simplified with lower accuracy. This trade-off limits the application of state-of-the-art machine learning models in management problems, which requires high prediction performance, as well as the understanding of individual attributes contributions to the model outcome. Multiple criteria decision aiding (MCDA) is a family of analytic approaches to depicting the rationale of human decision. It is also limited by strong assumptions. To meet the decision makers demand for more interpretable machine learning models, we propose a novel hybrid method, namely Neural Network-based Multiple Criteria Decision Aiding, which combines an additive value model and a fully-connected multilayer perceptron (MLP) to achieve good performance while capturing the explicit relationships between individual attributes and the prediction. NN-MCDA has a linear component to characterize such relationships through providing explicit marginal value functions, and a nonlinear component to capture the implicit high-order interactions between attributes and their complex nonlinear transformations. We demonstrate the effectiveness of NN-MCDA with extensive simulation studies and three real-world datasets. To the best of our knowledge, this research is the first to enhance the interpretability of machine learning models with MCDA techniques. The proposed framework also sheds light on how to use machine learning techniques to free MCDA from strong assumptions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا