ﻻ يوجد ملخص باللغة العربية
Two-dimensional molecular crystals have been beyond the reach of systematic investigation because of the lack or instability of their well-defined forms. Here, we demonstrate drastically enhanced photostability and Davydov splitting in single and few-layer tetracene (Tc) crystals sandwiched between inorganic 2D crystals of graphene or hexagonal BN. Molecular orientation and long-range order mapped with polarized wide-field photoluminescence imaging and optical second-harmonic generation revealed high crystallinity of the 2D Tc and its distinctive orientational registry with the 2D inorganic crystals, which were also verified with first-principles calculations. The reduced dielectric screening in 2D space was manifested by enlarged Davydov splitting and attenuated vibronic sidebands in the excitonic absorption and emission of monolayer Tc crystals. Photostable 2D molecular crystals and their size effects will lead to novel photophysical principles and photonic applications.
Polarized superradiant emission and exciton delocalization in tetracene single crystals are reported. Polarization-, time-, and temperature-resolved spectroscopy evidence the complete polarization of the zero-phonon line of the intrinsic tetracene em
In two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), new electronic phenomena such as tunable band gaps and strongly bound excitons and trions emerge from strong many-body effects, beyond spin-orbit coupling- and lattice sy
A surface layer (skin) that is functionally and structurally different from the bulk was found in single crystals of BiFeO3. Impedance analysis indicates that a previously reported anomaly at T* ~ 275 pm 5 ^/circC corresponds to a phase transition co
Interlayer excitons are observed coexisting with intralayer excitons in bi-layer, few-layer, and bulk MoSe2 single crystals by confocal reflection contrast spectroscopy. Quantitative analysis using the Dirac-Bloch-Equations provides unambiguous state
We report on the controlled growth of h-BN/graphite by means of molecular beam epitaxy (MBE). X-ray photoelectron spectroscopy (XPS) suggests an interface without any reaction or intermixing, while the angle resolved photoemission spectroscopy (ARPES