ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant spin-splitting and gap renormalization driven by trions in single-layer WS$_2$/h-BN heterostructures

376   0   0.0 ( 0 )
 نشر من قبل S{\\o}ren Ulstrup
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), new electronic phenomena such as tunable band gaps and strongly bound excitons and trions emerge from strong many-body effects, beyond spin-orbit coupling- and lattice symmetry-induced spin and valley degrees of freedom. Combining single-layer (SL) TMDs with other 2D materials in van der Waals heterostructures offers an intriguing means of controlling the electronic properties through these many-body effects via engineered interlayer interactions. Here, we employ micro-focused angle-resolved photoemission spectroscopy (microARPES) and in-situ surface doping to manipulate the electronic structure of SL WS$_2$ on hexagonal boron nitride (WS$_2$/h-BN). Upon electron doping, we observe an unexpected giant renormalization of the SL WS$_2$ valence band (VB) spin-orbit splitting from 430~meV to 660~meV, together with a band gap reduction of at least 325~meV, attributed to the formation of trionic quasiparticles. These findings suggest that the electronic, spintronic and excitonic properties are widely tunable in 2D TMD/h-BN heterostructures, as these are intimately linked to the quasiparticle dynamics of the materials.



قيم البحث

اقرأ أيضاً

In monolayer Transition Metal Dichalcogenides (TMDs) the valence and conduction bands are spin split because of the strong spin-orbit interaction. In tungsten-based TMDs the spin-ordering of the conduction band is such that the so-called dark exciton , consisting of an electron and a hole with opposite spin orientation, has lower energy than the A exciton. A possible mechanism leading to the transition from bright to dark excitons involves the scattering of the electrons from the upper to the lower conduction band state in K. Here we exploit the valley selective optical selection rules and use two-color helicity-resolved pump-probe spectroscopy to directly measure the intravalley spin-flip relaxation dynamics of electrons in the conduction band of single-layer WS$_2$. This process occurs on a sub-ps time scale and it is significantly dependent on the temperature, indicative of a phonon-assisted relaxation. These experimental results are supported by time-dependent ab-initio calculations which show that the intra-valley spin-flip scattering occurs on significantly longer time scales only exactly at the K point. In a realistic situation the occupation of states away from the minimum of the conduction band leads to a dramatic reduction of the scattering time.
The role of defects in van der Waals heterostructures made of graphene and hexagonal boron nitride (h-BN) is studied by a combination of ab initio and model calculations. Despite the weak van der Waals interaction between layers, defects residing in h-BN, such as carbon impurities and antisite defects, reveal a hybridization with graphene p$_{rm z}$ states, leading to midgap state formation. The induced midgap states modify the transport properties of graphene and can be reproduced by means of a simple effective tight-binding model. In contrast to carbon defects, it is found that oxygen defects do not strongly hybridize with graphenes low-energy states. Instead, oxygen drastically modifies the band gap of graphene, which emerges in a commensurate stacking on h-BN lattices.
The spin structure of the valence and conduction bands at the $overline{text{K}}$ and $overline{text{K}}$ valleys of single-layer WS$_2$ on Au(111) is determined by spin- and angle-resolved photoemission and inverse photoemission. The bands confining the direct band gap of 1.98 eV are out-of-plane spin polarized with spin-dependent energy splittings of 417 meV in the valence band and 16 meV in the conduction band. The sequence of the spin-split bands is the same in the valence and in the conduction bands and opposite at the $overline{text{K}}$ and the $overline{text{K}}$ high-symmetry points. The first observation explains dark excitons discussed in optical experiments, the latter points to coupled spin and valley physics in electron transport. The experimentally observed band dispersions are discussed along with band structure calculations for a freestanding single layer and for a single layer on Au(111).
Two-dimensional molecular crystals have been beyond the reach of systematic investigation because of the lack or instability of their well-defined forms. Here, we demonstrate drastically enhanced photostability and Davydov splitting in single and few -layer tetracene (Tc) crystals sandwiched between inorganic 2D crystals of graphene or hexagonal BN. Molecular orientation and long-range order mapped with polarized wide-field photoluminescence imaging and optical second-harmonic generation revealed high crystallinity of the 2D Tc and its distinctive orientational registry with the 2D inorganic crystals, which were also verified with first-principles calculations. The reduced dielectric screening in 2D space was manifested by enlarged Davydov splitting and attenuated vibronic sidebands in the excitonic absorption and emission of monolayer Tc crystals. Photostable 2D molecular crystals and their size effects will lead to novel photophysical principles and photonic applications.
The semiconducting single-layer transition metal dichalcogenides have been identified as ideal materials for accessing and manipulating spin- and valley-quantum numbers due to a set of favorable optical selection rules in these materials. Here, we ap ply time- and angle-resolved photoemission spectroscopy to directly probe optically excited free carriers in the electronic band structure of a high quality single layer of WS$_2$. We observe that the optically generated free hole density in a single valley can be increased by a factor of 2 using a circularly polarized optical excitation. Moreover, we find that by varying the photon energy of the excitation we can tune the free carrier density in a given spin-split state around the valence band maximum of the material. The control of the photon energy and polarization of the excitation thus permits us to selectively excite free electron-hole pairs with a given spin and within a single valley.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا