ﻻ يوجد ملخص باللغة العربية
This paper considers the joint optimization of trajectory and beamforming of a wirelessly connected robot using intelligent reflective surface (IRS)-assisted millimeter-wave (mm-wave) communications. The goal is to minimize the motion energy consumption subject to time and communication quality of service (QoS) constraints. This is a fundamental problem for industry 4.0, where robots may have to maximize their battery autonomy and communication efficiency. In such scenarios, IRSs and mm-waves can dramatically increase the spectrum efficiency of wireless communications providing high data rates and reliability for new industrial applications. We present a solution to the optimization problem that exploits mm-wave channel characteristics to decouple beamforming and trajectory optimizations. Then, the latter is solved by a successive-convex optimization (SCO) algorithm. The algorithm takes into account the obstacles positions and a radio map and provides solutions that avoid collisions and satisfy the QoS constraint. Moreover, we prove that the algorithm converges to a solution satisfying the Karush-Kuhn-Tucker (KKT) conditions.
This paper considers the motion energy minimization problem for a wirelessly connected robot using millimeter-wave (mm-wave) communications. These are assisted by an intelligent reflective surface (IRS) that enhances the coverage at such high frequen
For future networks (i.e., the fifth generation (5G) wireless networks and beyond), millimeter-wave (mmWave) communication with large available unlicensed spectrum is a promising technology that enables gigabit multimedia applications. Thanks to the
Drone base station (DBS) is a promising technique to extend wireless connections for uncovered users of terrestrial radio access networks (RAN). To improve user fairness and network performance, in this paper, we design 3D trajectories of multiple DB
The recent trend towards the high-speed transportation system has spurred the development of high-speed trains (HSTs). However, enabling HST users with seamless wireless connectivity using the roadside units (RSUs) is extremely challenging, mostly du
The use of extremely high frequency (EHF) or millimeter-wave (mmWave) band has attracted significant attention for the next generation wireless access networks. As demonstrated by recent measurements, mmWave frequencies render themselves quite sensit