ﻻ يوجد ملخص باللغة العربية
The use of extremely high frequency (EHF) or millimeter-wave (mmWave) band has attracted significant attention for the next generation wireless access networks. As demonstrated by recent measurements, mmWave frequencies render themselves quite sensitive to blocking caused by obstacles like foliage, humans, vehicles, etc. However, there is a dearth of analytical models for characterizing such blocking and the consequent effect on the signal reliability. In this paper, we propose a novel, general, and tractable model for characterizing the blocking caused by humans (assuming them to be randomly located in the environment) to mmWave propagation as a function of system parameters like transmitter-receiver locations and dimensions, as well as density and dimensions of humans. Moreover, the proposed model is validated using a ray-launcher tool. Utilizing the proposed model, the blockage probability is shown to increase with human density and separation between the transmitter-receiver pair. Furthermore, the developed analysis is shown to demonstrate the existence of a transmitter antenna height that maximizes the received signal strength, which in turn is a function of the transmitter-receiver distance and their dimensions.
The capability of smarter networked devices to dynamically select appropriate radio connectivity options is especially important in the emerging millimeter-wave (mmWave) systems to mitigate abrupt link blockage in complex environments. To enrich the
Millimeter-wave (mmWave) propagation is known to be severely affected by the blockage of the line-of-sight (LoS) path. In contrast to microwave systems, at shorter mmWave wavelengths such blockage can be caused by human bodies, where their mobility w
For future networks (i.e., the fifth generation (5G) wireless networks and beyond), millimeter-wave (mmWave) communication with large available unlicensed spectrum is a promising technology that enables gigabit multimedia applications. Thanks to the
This paper considers the motion energy minimization problem for a wirelessly connected robot using millimeter-wave (mm-wave) communications. These are assisted by an intelligent reflective surface (IRS) that enhances the coverage at such high frequen
This paper considers the joint optimization of trajectory and beamforming of a wirelessly connected robot using intelligent reflective surface (IRS)-assisted millimeter-wave (mm-wave) communications. The goal is to minimize the motion energy consumpt