ﻻ يوجد ملخص باللغة العربية
This paper considers the motion energy minimization problem for a wirelessly connected robot using millimeter-wave (mm-wave) communications. These are assisted by an intelligent reflective surface (IRS) that enhances the coverage at such high frequencies characterized by high blockage sensitivity. The robot is subject to time and uplink communication quality of service (QoS) constraints. This is a fundamental problem in fully automated factories that characterize Industry 4.0, where robots may have to perform tasks with given deadlines while maximizing the battery autonomy and communication efficiency. To account for the mutual dependence between robot position and communication QoS, we propose a joint optimization of robot trajectory and beamforming at the IRS and access point (AP). We present a solution that first exploits mm-wave channel characteristics to decouple beamforming and trajectory optimization. Then, the latter is solved by a successive-convex optimization-based algorithm. The algorithm takes into account the obstacles positions and a radio map to avoid collisions and poorly covered areas. We prove that the algorithm can converge to a solution satisfying the Karush-Kuhn-Tucker (KKT) conditions. The simulation results show a dramatic reduction of the motion energy consumption with respect to methods that aim to find maximum-rate trajectories. Moreover, we show how the IRS and the beamforming optimization improve the motion energy efficiency of the robot.
This paper considers the joint optimization of trajectory and beamforming of a wirelessly connected robot using intelligent reflective surface (IRS)-assisted millimeter-wave (mm-wave) communications. The goal is to minimize the motion energy consumpt
The recent trend towards the high-speed transportation system has spurred the development of high-speed trains (HSTs). However, enabling HST users with seamless wireless connectivity using the roadside units (RSUs) is extremely challenging, mostly du
For future networks (i.e., the fifth generation (5G) wireless networks and beyond), millimeter-wave (mmWave) communication with large available unlicensed spectrum is a promising technology that enables gigabit multimedia applications. Thanks to the
Autonomous flight for UAVs relies on visual information for avoiding obstacles and ensuring a safe collision-free flight. In addition to visual clues, safe UAVs often need connectivity with the ground station. In this paper, we study the synergies be
Signal occlusion by building blockages is a double-edged sword for the performance of millimeter-wave (mmW) communication networks. Buildings may dominantly attenuate the useful signals, especially when mmW base stations (BSs) are sparsely deployed c