ﻻ يوجد ملخص باللغة العربية
The recent trend towards the high-speed transportation system has spurred the development of high-speed trains (HSTs). However, enabling HST users with seamless wireless connectivity using the roadside units (RSUs) is extremely challenging, mostly due to the lack of line of sight link. To address this issue, we propose a novel framework that uses intelligent reflecting surfaces (IRS)-enabled unmanned aerial vehicles (UAVs) to provide line of sight communication to HST users. First, we formulate the optimization problem where the objective is to maximize the minimum achievable rate of HSTs by jointly optimizing the trajectory of UAV and the phase-shift of IRS. Due to the non-convex nature of the formulated problem, it is decomposed into two subproblems: IRS phase-shift problem and UAV trajectory optimization problem. Next, a Binary Integer Linear Programming (BILP) and a Soft Actor-Critic (SAC) are constructed in order to solve our decomposed problems. Finally, comprehensive numerical results are provided in order to show the effectiveness of our proposed framework.
The use of the unmanned aerial vehicle (UAV) has been foreseen as a promising technology for the next generation communication networks. Since there are no regulations for UAVs deployment yet, most likely they form a network in coexistence with an al
Unmanned aerial vehicles (UAVs) can enhance the performance of cellular networks, due to their high mobility and efficient deployment. In this paper, we present a first study on how the user mobility affects the UAVs trajectories of a multiple-UAV as
This paper considers the motion energy minimization problem for a wirelessly connected robot using millimeter-wave (mm-wave) communications. These are assisted by an intelligent reflective surface (IRS) that enhances the coverage at such high frequen
In this paper, we study unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) with the objective to optimize computation offloading with minimum UAV energy consumption. In the considered scenario, a UAV plays the role of an aerial cloudl
Reconfigurable intelligent surface (RIS) is a promising reflective radio technology for improving the coverage and rate of future wireless systems by reconfiguring the wireless propagation environment. The current work mainly focuses on the physical