ﻻ يوجد ملخص باللغة العربية
For $Delta ge 5$ and $q$ large as a function of $Delta$, we give a detailed picture of the phase transition of the random cluster model on random $Delta$-regular graphs. In particular, we determine the limiting distribution of the weights of the ordered and disordered phases at criticality and prove exponential decay of correlations and central limit theorems away from criticality. Our techniques are based on using polymer models and the cluster expansion to control deviations from the ordered and disordered ground states. These techniques also yield efficient approximate counting and sampling algorithms for the Potts and random cluster models on random $Delta$-regular graphs at all temperatures when $q$ is large. This includes the critical temperature at which it is known the Glauber and Swendsen-Wang dynamics for the Potts model mix slowly. We further prove new slow-mixing results for Markov chains, most notably that the Swendsen-Wang dynamics mix exponentially slowly throughout an open interval containing the critical temperature. This was previously only known at the critical temperature. Many of our results apply more generally to $Delta$-regular graphs satisfying a small-set expansion condition.
In a recent paper [15], Giardin{`a}, Giberti, Hofstad, Prioriello have proved a law of large number and a central limit theorem with respect to the annealed measure for the magnetization of the Ising model on some random graphs including the random 2
This paper is studying the critical regime of the planar random-cluster model on $mathbb Z^2$ with cluster-weight $qin[1,4)$. More precisely, we prove crossing estimates in quads which are uniform in their boundary conditions and depend only on their
Consider a collection of random variables attached to the vertices of a graph. The reconstruction problem requires to estimate one of them given `far away observations. Several theoretical results (and simple algorithms) are available when their join
We study an evolving spatial network in which sequentially arriving vertices are joined to existing vertices at random according to a rule that combines preference according to degree with preference according to spatial proximity. We investigate pha
We study the abelian sandpile model on a random binary tree. Using a transfer matrix approach introduced by Dhar & Majumdar, we prove exponential decay of correlations, and in a small supercritical region (i.e., where the branching process survives w