ﻻ يوجد ملخص باللغة العربية
We study the abelian sandpile model on a random binary tree. Using a transfer matrix approach introduced by Dhar & Majumdar, we prove exponential decay of correlations, and in a small supercritical region (i.e., where the branching process survives with positive probability) exponential decay of avalanche sizes. This shows a phase transition phenomenon between exponential decay and power law decay of avalanche sizes. Our main technical tools are: (1) A recursion for the ratio between the numbers of weakly and strongly allowed configurations which is proved to have a well-defined stochastic solution; (2) quenched and annealed estimates of the eigenvalues of a product of $n$ random transfer matrices.
Consider an infinite tree with random degrees, i.i.d. over the sites, with a prescribed probability distribution with generating function G(s). We consider the following variation of Renyis parking problem, alternatively called blocking RSA: at every
We introduce a natural stochastic extension, called SSP, of the abelian sandpile model(ASM), which shares many mathematical properties with ASM, yet radically differs in its physical behavior, for example in terms of the shape of the steady state and
In a recent paper [15], Giardin{`a}, Giberti, Hofstad, Prioriello have proved a law of large number and a central limit theorem with respect to the annealed measure for the magnetization of the Ising model on some random graphs including the random 2
For $Delta ge 5$ and $q$ large as a function of $Delta$, we give a detailed picture of the phase transition of the random cluster model on random $Delta$-regular graphs. In particular, we determine the limiting distribution of the weights of the orde
We consider ferromagnetic Ising models on graphs that converge locally to trees. Examples include random regular graphs with bounded degree and uniformly random graphs with bounded average degree. We prove that the cavity prediction for the limiting