ﻻ يوجد ملخص باللغة العربية
Consider a collection of random variables attached to the vertices of a graph. The reconstruction problem requires to estimate one of them given `far away observations. Several theoretical results (and simple algorithms) are available when their joint probability distribution is Markov with respect to a tree. In this paper we consider the case of sequences of random graphs that converge locally to trees. In particular, we develop a sufficient condition for the tree and graph reconstruction problem to coincide. We apply such condition to colorings of random graphs. Further, we characterize the behavior of Ising models on such graphs, both with attractive and random interactions (respectively, `ferromagnetic and `spin glass).
A bootstrap percolation process on a graph $G$ is an infection process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round each uninfected node which has at least $r$ infected neighbours becomes infect
In a recent paper [15], Giardin{`a}, Giberti, Hofstad, Prioriello have proved a law of large number and a central limit theorem with respect to the annealed measure for the magnetization of the Ising model on some random graphs including the random 2
We consider ferromagnetic Ising models on graphs that converge locally to trees. Examples include random regular graphs with bounded degree and uniformly random graphs with bounded average degree. We prove that the cavity prediction for the limiting
The voter model is a classical interacting particle system modelling how consensus is formed across a network. We analyse the time to consensus for the voter model when the underlying graph is a subcritical scale-free random graph. Moreover, we gener
Let a random geometric graph be defined in the supercritical regime for the existence of a unique infinite connected component in Euclidean space. Consider the first-passage percolation model with independent and identically distributed random variab