ﻻ يوجد ملخص باللغة العربية
We study an evolving spatial network in which sequentially arriving vertices are joined to existing vertices at random according to a rule that combines preference according to degree with preference according to spatial proximity. We investigate phase transitions in graph structure as the relative weighting of these two components of the attachment rule is varied. Previous work of one of the authors showed that when the geometric component is weak, the limiting degree sequence of the resulting graph coincides with that of the standard Barabasi--Albert preferential attachment model. We show that at the other extreme, in the case of a sufficiently strong geometric component, the limiting degree sequence coincides with that of a purely geometric model, the on-line nearest-neighbour graph, which is of interest in its own right and for which we prove some extensions of known results. We also show the presence of an intermediate regime, in which the behaviour differs significantly from both the on-line nearest-neighbour graph and the Barabasi--Albert model; in this regime, we obtain a stretched exponential upper bound on the degree sequence. Our results lend some mathematical support to simulation studies of Manna and Sen, while proving that the power law to stretched exponential phase transition occurs at a different point from the one conjectured by those authors.
We propose a random graph model with preferential attachment rule and emph{edge-step functions} that govern the growth rate of the vertex set. We study the effect of these functions on the empirical degree distribution of these random graphs. More sp
We consider the random walk attachment graph introduced by Saram{a}ki and Kaski and proposed as a mechanism to explain how behaviour similar to preferential attachment may appear requiring only local knowledge. We show that if the length of the rando
In this paper, a random graph process ${G(t)}_{tgeq 1}$ is studied and its degree sequence is analyzed. Let $(W_t)_{tgeq 1}$ be an i.i.d. sequence. The graph process is defined so that, at each integer time $t$, a new vertex, with $W_t$ edges attache
We give an explicit construction of the weak local limit of a class of preferential attachment graphs. This limit contains all local information and allows several computations that are otherwise hard, for example, joint degree distributions and, mor
Preferential attachment models form a popular class of growing networks, where incoming vertices are preferably connected to vertices with high degree. We consider a variant of this process, where vertices are equipped with a random initial fitness r