ﻻ يوجد ملخص باللغة العربية
Set-Membership Filter (SMF) has been extensively studied for state estimation in the presence of bounded noises with unknown statistics. Since it was first introduced in the 1960s, the studies on SMF have used the set-based description as its mathematical framework. One important issue that has been overlooked is the optimality of SMF. In this work, we put forward a new mathematical framework for SMF using concepts of uncertain variables. We first establish two basic properties of uncertain variables, namely, the law of total range (a non-stochastic version of the law of total probability) and the equivalent Bayes rule. This enables us to put forward a general SMFing framework with established optimality. Furthermore, we obtain the optimal SMF under a non-stochastic Markov condition, which is shown to be fundamentally equivalent to the Bayes filter. Note that the classical SMF in the literature is only equivalent to the optimal SMF we obtained under the non-stochastic Markov condition. When this condition is violated, we show that the classical SMF is not optimal and it only gives an outer bound on the optimal estimation.
This paper studies a dynamic real-time optimization in the context of model-based time-optimal operation of batch processes under parametric model mismatch. In order to tackle the model-mismatch issue, a receding-horizon policy is usually followed wi
This paper deals with the design of discrete-time algorithms for the robust filtering differentiator. Two discrete-time realizations of the filtering differentiator are introduced. The first one, which is based on an exact discretization of the conti
Power electronic converters for integrating renewable energy resources into power systems can be divided into grid-forming and grid-following inverters. They possess certain similarities, but several important differences, which means that the relati
This paper presents methods for using zonotopes and constrained zonotopes to improve the practicality of a wide variety of set-based operations commonly used in control theory. The proposed methods extend the use of constrained zonotopes to represent
Location of non-stationary forced oscillation (FO) sources can be a challenging task, especially in cases under resonance condition with natural system modes, where the magnitudes of the oscillations could be greater in places far from the source. Th