ترغب بنشر مسار تعليمي؟ اضغط هنا

Set operations and order reductions for constrained zonotopes

150   0   0.0 ( 0 )
 نشر من قبل Justin Koeln
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents methods for using zonotopes and constrained zonotopes to improve the practicality of a wide variety of set-based operations commonly used in control theory. The proposed methods extend the use of constrained zonotopes to represent sets resulting from operations including halfspace intersections, convex hulls, robust positively invariant sets, and Pontryagin differences. Order reduction techniques are also presented that provide lower-complexity inner-approximations of zonotopes and constrained zonotopes. Numerical examples are used to demonstrate the efficacy and computational advantages of using zonotope-based set representations for dynamic system analysis and control.



قيم البحث

اقرأ أيضاً

This article presents a new set representation named the hybrid zonotope. The hybrid zonotope is shown to be equivalent to $2^N$ constrained zonotopes through the addition of $N$ binary zonotope factors and is well-suited for the analysis of hybrid s ystems with both continuous and discrete states and inputs. The major contribution of this manuscript is a closed-form solution for exact forward reachable sets of linear mixed logical dynamical systems. This is given by a simple identity and does not require solving any optimization programs or taking set approximations. The proposed approach captures the worst-case exponential growth in the number of convex sets required to represent the nonconvex reachable set of a hybrid system while exhibiting only linear growth in the complexity of the hybrid zonotope set representation. To reduce both set representation complexity and the computational burden of reachability analysis, a binary tree is used to store only the combinations of binary factors of the hybrid zonotope that map to nonempty convex sets. The proposed approach is applied to an established benchmark example where the exact reachable set of a discrete-time hybrid system with six continuous and two discrete states is given by a single hybrid zonotope equivalent to the union of 657 constrained zonotopes, and is represented using only 283 continuous factors, 29 binary factors, and 177 linear equality constraints. Furthermore, the hybrid zonotope is closed under linear mappings, Minkowski sums, generalized intersections, and halfspace intersections.
Ellipsoids are a common representation for reachability analysis because they are closed under affine maps and allow conservative approximation of Minkowski sums; this enables one to incorporate uncertainty and linearization error in a dynamical syst em by exapnding the size of the reachable set. Zonotopes, a type of symmetric, convex polytope, are similarly frequently used due to efficient numerical implementation of affine maps and exact Minkowski sums. Both of these representations also enable efficient, convex collision detection for fault detection or formal verification tasks, wherein one checks if the reachable set of a system collides (i.e., intersects) with an unsafe set. However, both representations often result in conservative representations for reachable sets of arbitrary systems, and neither is closed under intersection. Recently, constrained zonotopes and constrained polynomial zonotopes have been shown to overcome some of these conservatism challenges, and are closed under intersection. However, constrained zonotopes can not represent shapes with smooth boundaries such as ellipsoids, and constrained polynomial zonotopes can require solving a non-convex program for collision checking (i.e., fault detection). This paper introduces ellipsotopes, a set representation that is closed under affine maps, Minkowski sums, and intersections. Ellipsotopes combine the advantages of ellipsoids and zonotopes, and enable convex collision checking at the expense of more conservative reachable sets than constrained polynomial zonotopes. The utility of this representation is demonstrated on several examples.
This paper considers a constrained discrete-time linear system subject to actuation attacks. The attacks are modelled as false data injections to the system, such that the total input (control input plus injection) satisfies hard input constraints. W e establish a sufficient condition under which it is not possible to maintain the states of the system within a compact state constraint set for all possible realizations of the actuation attack. The developed condition is a simple function of the spectral radius of the system, the relative sizes of the input and state constraint sets, and the proportion of the input constraint set allowed to the attacker.
Moving parcels from origin to destination should not require a lot of re-planning. However, the vast number of shipments and destinations, which need to be re-aligned in real-time due to various external factors makes the delivery process a complex i ssue to tackle. Anticipating the impact of external factors though can provide more robust logistic plans which are resilient to changes. The work described in this paper, was carried out in the EU-funded COG-LO project and addresses the issue of parcel delivery across the road network making use of context-awareness information as an input for the optimization operations. A positive impact derived from the implementation of these services is expected due to complex event detection, context awareness and decision support at both local and global level of logistics operations.
In this paper, we study the problem of designing a simultaneous mode, input, and state set-valued observer for a class of hidden mode switched nonlinear systems with bounded-norm noise and unknown input signals, where the hidden mode and unknown inpu ts can represent fault or attack models and exogenous fault/disturbance or adversarial signals, respectively. The proposed multiple-model design has three constituents: (i) a bank of mode-matched set-valued observers, (ii) a mode observer, and (iii) a global fusion observer. The mode-matched observers recursively find the sets of compatible states and unknown inputs conditioned on the mode being the true mode, while the mode observer eliminates incompatible modes by leveraging a residual-based criterion. Then, the global fusion observer outputs the estimated sets of states and unknown inputs by taking the union of the mode-matched set-valued estimates over all compatible modes. Moreover, sufficient conditions to guarantee the elimination of all false modes (i.e., mode-detectability) are provided and the effectiveness of our approach is demonstrated and compared with existing approaches using an illustrative example.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا