ﻻ يوجد ملخص باللغة العربية
This paper studies a dynamic real-time optimization in the context of model-based time-optimal operation of batch processes under parametric model mismatch. In order to tackle the model-mismatch issue, a receding-horizon policy is usually followed with frequent re-optimization. The main problem addressed in this study is the high computational burden that is usually required by such schemes. We propose an approach that uses parameterized conditions of optimality in the adaptive predictive-control fashion. The uncertainty in the model predictions is treated explicitly using reachable sets that are projected into the optimality conditions. Adaptation of model parameters is performed online using set-membership estimation. A class of batch membrane separation processes is in the scope of the presented applications, where the benefits of the presented approach are outlined.
In this paper we present a Learning Model Predictive Control (LMPC) strategy for linear and nonlinear time optimal control problems. Our work builds on existing LMPC methodologies and it guarantees finite time convergence properties for the closed-lo
Set-Membership Filter (SMF) has been extensively studied for state estimation in the presence of bounded noises with unknown statistics. Since it was first introduced in the 1960s, the studies on SMF have used the set-based description as its mathema
Moving parcels from origin to destination should not require a lot of re-planning. However, the vast number of shipments and destinations, which need to be re-aligned in real-time due to various external factors makes the delivery process a complex i
Connected and Automated Vehicles (CAVs), particularly those with a hybrid electric powertrain, have the potential to significantly improve vehicle energy savings in real-world driving conditions. In particular, the Eco-Driving problem seeks to design
Reusable decoys offer a cost-effective alternative to the single-use hardware commonly applied to protect surface assets from threats. Such decoys portray fake assets to lure threats away from the true asset. To deceive a threat, a decoy first has to