ﻻ يوجد ملخص باللغة العربية
Location of non-stationary forced oscillation (FO) sources can be a challenging task, especially in cases under resonance condition with natural system modes, where the magnitudes of the oscillations could be greater in places far from the source. Therefore, it is of interest to construct a global time-frequency (TF) representation (TFR) of the system, which can capture the oscillatory components present in the system. In this paper we develop a systematic methodology for frequency identification and component filtering of non-stationary power system forced oscillations (FO) based on multi-channel TFR. The frequencies of the oscillatory components are identified on the TF plane by applying a modified ridge estimation algorithm. Then, filtering of the components is carried out on the TF plane applying the anti-transform functions over the individual TFRs around the identified ridges. This step constitutes an initial stage for the application of the Dissipating Energy Flow (DEF) method used to locate FO sources. Besides, we compare three TF approaches: short-time Fourier transform (STFT), STFT-based synchrosqueezing transform (FSST) and second order FSST (FSST2). Simulated signals and signals from real operation are used to show that the proposed method provides a systematic framework for identification and filtering of power systems non-stationary forced oscillations.
This paper discusses a novel fault location approach using single ended measurement. The natural dissipation of the circuit parameters are considered for fault location. A relationship between the damped natural frequency of oscillation of the transm
Efficiency and multisimultaneous-frequency (MSF) output capability are two major criteria characterizing the performance of a power amplifier in the application of multifrequency eddy current testing (MECT). Switch-mode power amplifiers are known to
Forced oscillation (FO) is a significant concern threating the power system stability. Its mechanisms are mostly studied via linear models. However, FO amplitude is increasing, e.g., Nordic and Western American FOs, which can stimulate power system n
In this study, we propose the global context guided channel and time-frequency transformations to model the long-range, non-local time-frequency dependencies and channel variances in speaker representations. We use the global context information to e
ReLU (rectified linear units) neural network has received significant attention since its emergence. In this paper, a univariate ReLU (UReLU) neural network is proposed to both modelling the nonlinear dynamic system and revealing insights about the s