ﻻ يوجد ملخص باللغة العربية
The multinucleon transfer reaction in the collisions of $^{40}$Ca+$^{124}$Sn at $E_{textrm{c.m.}}=128.5$ MeV is investigated by using the improved quantum molecular dynamics model. The measured angular distributions and isotopic distributions of the products are reproduced reasonably well by the calculations. The multinucleon transfer reactions of $^{40}$Ca+$^{112}$Sn, $^{58}$Ni+$^{112}$Sn, $^{106}$Cd+$^{112}$Sn, and $^{48}$Ca+$^{112}$Sn are also studied. It shows that the combinations of neutron-deficient projectile and target are advantageous to produce the exotic neutron-deficient nuclei near $N, Z$ = 50. The charged particles emission plays an important role at small impact parameters in the deexcitation processes of the system. The production cross sections of the exotic neutron-deficient nuclei in multinucleon transfer reactions are much larger than those measured in the fragmentation and fusion-evaporation reactions. Several new neutron-deficient nuclei can be produced in $^{106}$Cd+$^{112}$Sn reaction. The corresponding production cross sections for the new neutron-deficient nuclei, $^{101,102}$Sb, $^{103}$Te, and $^{106,107}$I, are 2.0 nb, 4.1 nb, 6.5 nb, 0.4 $mu$b and 1.0 $mu$b, respectively.
Within the dinuclear system model, unknown neutron-deficient isotopes Np, Pu, Am, Cm, Bk, Cf, Es, Fm are investigated in $^{40}$Ca, $^{36,40}$Ar, $^{32}$S, $^{28}$Si,$^{24}$Mg induced fusion-evaporation reactions and multinucleon transfer reactions w
Within the framework of the dinuclear system model, the production mechanism of neutron-rich heavy nuclei around N = 162 has been investigated systematically. The isotopic yields in the multinucleon transfer reaction of $^{238}$U + $^{248}$Cm was ana
The dynamical mechanism of multinucleon transfer (MNT) reactions has been investigated within the dinuclear system (DNS) model, in which the sequential nucleon transfer is described by solving a set of microscopically derived master equations. Produc
The multinucleon transfer reactions in collisions of $^{136}$Xe+$^{198}$Pt at incident energies $E_{textrm{lab}}=$5.25, 6.20, 7.98, 10.0, and 15.0 MeV/nucleon are investigated by using the improved quantum molecular dynamics model. It is found that 6
Multinucleon transfer reactions in 40Ca+96Zr and 90Zr+208Pb have been measured at energies close to the Coulomb barrier in a high resolution gamma-particle coincidence experiment. The large solid angle magnetic spectrometer PRISMA coupled to the CLAR