ترغب بنشر مسار تعليمي؟ اضغط هنا

Production of neutron-rich heavy nuclei around N = 162 in multinucleon transfer reactions

251   0   0.0 ( 0 )
 نشر من قبل Zhaoqing Feng
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Within the framework of the dinuclear system model, the production mechanism of neutron-rich heavy nuclei around N = 162 has been investigated systematically. The isotopic yields in the multinucleon transfer reaction of $^{238}$U + $^{248}$Cm was analyzed and compared the available experimental data. Systematics on the production of superheavy nuclei via $^{238}$U on $^{252,254}$Cf, $^{254}$Es and $^{257}$Fm is investigated. It is found that the shell effect is of importance in the formation of neutron-rich nuclei around N=162 owing to the enhancement of fission barrier. The fragments in the multinucleon transfer reactions manifest the broad isotopic distribution and are dependent on the beam energy. The polar angles of the fragments tend to the forward emission with increasing the beam energy. The production cross sections of new isotopes are estimated and heavier targets are available for the neutron-rich superheavy nucleus formation. The optimal system and beam energy are proposed for the future experimental measurements.



قيم البحث

اقرأ أيضاً

85 - Peng-Hui Chen , Fei Niu , Wei Zuo 2019
The dynamical mechanism of multinucleon transfer (MNT) reactions has been investigated within the dinuclear system (DNS) model, in which the sequential nucleon transfer is described by solving a set of microscopically derived master equations. Produc tion cross sections, total kinetic energy spectra, angular distribution of formed fragments in the reactions of $^{124,132}$Sn+ $^{238}$U/$^{248}$Cm near Coulomb barrier energies are thoroughly analyzed. It is found that the total kinetic energies of primary fragments are dissipated from the relative motion energy and rotational energy of the two colliding nuclei. The fragments are formed in the forward angle domain. The energy dependence of the angular spectra is different between projectile-like and target-like fragments. Isospin equilibrium is governed under the potential energy surface. The production cross sections of neutron-rich isotopes are enhanced around the shell closure.
86 - Cheng Li , Fan Zhang , Xinxin Xu 2018
The multinucleon transfer reactions in collisions of $^{136}$Xe+$^{198}$Pt at incident energies $E_{textrm{lab}}=$5.25, 6.20, 7.98, 10.0, and 15.0 MeV/nucleon are investigated by using the improved quantum molecular dynamics model. It is found that 6 .20 MeV/nucleon is the optimal incident energy for producing the neutron-rich heavy nuclei. About 80 unknown neutron-rich nuclei might be produced in this reaction with cross sections from 10$^{-6}$ to 10$^{-2}$ mb. The angular distributions of the neutron-rich isotopes are predicted.
The multinucleon transfer reaction in the collisions of $^{40}$Ca+$^{124}$Sn at $E_{textrm{c.m.}}=128.5$ MeV is investigated by using the improved quantum molecular dynamics model. The measured angular distributions and isotopic distributions of the products are reproduced reasonably well by the calculations. The multinucleon transfer reactions of $^{40}$Ca+$^{112}$Sn, $^{58}$Ni+$^{112}$Sn, $^{106}$Cd+$^{112}$Sn, and $^{48}$Ca+$^{112}$Sn are also studied. It shows that the combinations of neutron-deficient projectile and target are advantageous to produce the exotic neutron-deficient nuclei near $N, Z$ = 50. The charged particles emission plays an important role at small impact parameters in the deexcitation processes of the system. The production cross sections of the exotic neutron-deficient nuclei in multinucleon transfer reactions are much larger than those measured in the fragmentation and fusion-evaporation reactions. Several new neutron-deficient nuclei can be produced in $^{106}$Cd+$^{112}$Sn reaction. The corresponding production cross sections for the new neutron-deficient nuclei, $^{101,102}$Sb, $^{103}$Te, and $^{106,107}$I, are 2.0 nb, 4.1 nb, 6.5 nb, 0.4 $mu$b and 1.0 $mu$b, respectively.
Within the dinuclear system model, unknown neutron-deficient isotopes Np, Pu, Am, Cm, Bk, Cf, Es, Fm are investigated in $^{40}$Ca, $^{36,40}$Ar, $^{32}$S, $^{28}$Si,$^{24}$Mg induced fusion-evaporation reactions and multinucleon transfer reactions w ith radioactive beams $^{59}$Cu,$^{69}$As,$^{90}$Nb,$^{91}$Tc, $^{94}$Rh, $^{105,110}$Sn, $^{118}$Xe induced with $^{238}$U near Coulomb barrier energies. The production cross sections of compound nuclei in the fusion-evaporation reactions and fragments yields in the multinucleon transfer reactions are calculated within the model. A statistical approach is used to evaluate the survival probability of excited nuclei via the both reaction mechanisms. A dynamical deformation is implemented into the model in the dissipation process. It is found that charge particle channels (alpha and proton) dominate in the decay process of proton-rich nuclides and the fusion-evaporation reactions are favorable to produce the new neutron-deficient actinide isotopes. The total kinetic energies and angular spectra of primary fragments are strongly dependent on colliding orientations.
136 - S. Szilner , C.A. Ur , L. Corradi 2007
Multinucleon transfer reactions in 40Ca+96Zr and 90Zr+208Pb have been measured at energies close to the Coulomb barrier in a high resolution gamma-particle coincidence experiment. The large solid angle magnetic spectrometer PRISMA coupled to the CLAR A gamma-array has been employed. Trajectory reconstruction has been applied for the complete identification of transfer products. Mass and charge yields, total kinetic energy losses, gamma transitions of the binary reaction partners, and comparison of data with semiclassical calculations are reported. Specific transitions in 95Zr populated in one particle transfer channels are discussed in terms of particle-phonon couplings. The gamma decays from states in 42Ca in the excitation energy region expected from pairing vibrations are also observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا