ﻻ يوجد ملخص باللغة العربية
Within the dinuclear system model, unknown neutron-deficient isotopes Np, Pu, Am, Cm, Bk, Cf, Es, Fm are investigated in $^{40}$Ca, $^{36,40}$Ar, $^{32}$S, $^{28}$Si,$^{24}$Mg induced fusion-evaporation reactions and multinucleon transfer reactions with radioactive beams $^{59}$Cu,$^{69}$As,$^{90}$Nb,$^{91}$Tc, $^{94}$Rh, $^{105,110}$Sn, $^{118}$Xe induced with $^{238}$U near Coulomb barrier energies. The production cross sections of compound nuclei in the fusion-evaporation reactions and fragments yields in the multinucleon transfer reactions are calculated within the model. A statistical approach is used to evaluate the survival probability of excited nuclei via the both reaction mechanisms. A dynamical deformation is implemented into the model in the dissipation process. It is found that charge particle channels (alpha and proton) dominate in the decay process of proton-rich nuclides and the fusion-evaporation reactions are favorable to produce the new neutron-deficient actinide isotopes. The total kinetic energies and angular spectra of primary fragments are strongly dependent on colliding orientations.
The multinucleon transfer reaction in the collisions of $^{40}$Ca+$^{124}$Sn at $E_{textrm{c.m.}}=128.5$ MeV is investigated by using the improved quantum molecular dynamics model. The measured angular distributions and isotopic distributions of the
Within the framework of the dinuclear system model, the production mechanism of neutron-rich heavy nuclei around N = 162 has been investigated systematically. The isotopic yields in the multinucleon transfer reaction of $^{238}$U + $^{248}$Cm was ana
The dynamical mechanism of multinucleon transfer (MNT) reactions has been investigated within the dinuclear system (DNS) model, in which the sequential nucleon transfer is described by solving a set of microscopically derived master equations. Produc
Multinucleon transfer reactions in 40Ca+96Zr and 90Zr+208Pb have been measured at energies close to the Coulomb barrier in a high resolution gamma-particle coincidence experiment. The large solid angle magnetic spectrometer PRISMA coupled to the CLAR
The multinucleon transfer reactions in collisions of $^{136}$Xe+$^{198}$Pt at incident energies $E_{textrm{lab}}=$5.25, 6.20, 7.98, 10.0, and 15.0 MeV/nucleon are investigated by using the improved quantum molecular dynamics model. It is found that 6