ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of atomic nuclear reaction products via optical imaging

53   0   0.0 ( 0 )
 نشر من قبل Benjamin Loseth
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we propose a new method for measuring the cross section of low yield nuclear reactions by capturing the products in a cryogenically frozen noble gas solid. Once embedded in the noble gas solid, which is optically transparent, the product atoms can be selectively identified by laser induced fluorescence and individually counted via optical imaging to determine the cross section. Single atom sensitivity by optical imaging is feasible because the surrounding lattice of noble gas atoms facilitates a large wavelength shift between the excitation and emission spectrum of the product atoms. The tools and techniques from the fields of single molecule spectroscopy and superresolution imaging in combination with an electromagnetic recoil separator, for beam and isotopic differentiation, allow for a detection scheme with near unity efficiency, a high degree of selectivity, and single atom sensitivity. This technique could be used to determine a number of astrophysically important nuclear reaction rates.



قيم البحث

اقرأ أيضاً

256 - M. Bruno , F. Gramegna , T. Marchi 2013
An upgraded GARFIELD + Ring Counter (RCo) apparatus is presented with improved performances as far as electronics and detectors are concerned. On one side fast sampling digital read out has been extended to all detectors, allowing for an important si mplification of the signal processing chain together with an enriched extracted information. On the other side a relevant improvement has been made in the forward part of the setup (RCo): an increased granularity of the CsI(Tl) crystals and a higher homogeneity in the silicon detector resistivity. The renewed performances of the GARFIELD + RCo array make it suitable for nuclear reaction measurements both with stable and with Radioactive Ion Beams (RIB), like the ones foreseen for the SPES facility, where the Physics of Isospin can be studied.
GRETA, the Gamma-Ray Energy Tracking Array, is an array of highly-segmented HPGe detectors designed to track gamma-rays emitted in beam-physics experiments. Its high detection efficiency and state-of-the-art position resolution make it well-suited fo r imaging applications. In this paper, we use simulated imaging data to illustrate how imaging can be applied to nuclear lifetime measurments. This approach can offer multiple benefits over traditional lifetime techniques such as RDM.
111 - Hardy Simgen 2013
After the accident in the Japanese Fukushima Dai-ichi nuclear power plant in March 2011 large amounts of radioactivity were released and distributed in the atmosphere. Among them were also radioactive noble gas isotopes which can be used as tracers t o test global atmospheric circulation models. This work presents unique measurements of the radionuclide $^{133}$Xe from Fukushima in the upper troposphere above Germany. The measurements involve air sampling in a research jet aircraft followed by chromatographic xenon extraction and ultra-low background gas counting with miniaturized proportional counters. With this technique a detection limit of the order of 100 $^{133}$Xe atoms in litre-scale air samples (corresponding to about 100 mBq/m$^3$) is achievable. Our results provide proof that the $^{133}$Xe-rich ground level air layer from Fukushima was lifted up to the tropopause and distributed hemispherically. Moreover, comparisons with ground level air measurements indicate that the arrival of the radioactive plume at high altitude over Germany occurred several days before the ground level plume.
We have used a single-particle detector system, based on secondary electron emission, for counting low-energetic (~keV/u) massive products originating from atomic and molecular ion reactions in the electrostatic Cryogenic Storage Ring (CSR). The dete ctor is movable within the cryogenic vacuum chamber of CSR, and was used to measure production rates of a variety of charged and neutral daughter particles. In operation at a temperature of ~6 K, the detector is characterised by a high dynamic range, combining a low dark event rate with good high-rate particle counting capability. On-line measurement of the pulse height distributions proved to be an important monitor of the detector response at low temperature. Statistical pulse-height analysis allows to infer the particle detection efficiency of the detector, which has been found to be close to unity also in cryogenic operation at 6 K.
The missing mass spectroscopy of $Xi^{-}$ hypernuclei with the $(K^{-},K^{+})$ reaction is planned to be performed at the J-PARC K1.8 beam line by using a new magnetic spectrometer, Strangeness $-2$ Spectrometer (S-2S). A $v{C}$cerenkov detector with a radiation medium of pure water (refractive index of 1.33) is designed to be used for on-line proton rejection for a momentum range of 1.2 to 1.6 GeV/$c$ in S-2S. Prototype water $v{C}$erenkov detectors were developed and tested with positron beams and cosmic rays to estimate their proton-rejection capability. We achieved an average number of photoelectrons of greater than 200 with the latest prototype for cosmic rays, which was stable during an expected beam time of one month. The performance of the prototype in the cosmic-ray test was well reproduced with a Monte Carlo simulation in which some input parameters were adjusted. Based on the Monte Carlo simulation, we expect to achieve $>90%$ proton-rejection efficiency while maintaining $>95%$ $K^{+}$ survival ratio in the whole S-2S acceptance. The performance satisfies the requirements to conduct the spectroscopic study of $Xi^{-}$ hypernuclei at J-PARC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا