ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-particle detection of products from atomic and molecular reactions in a cryogenic ion storage ring

86   0   0.0 ( 0 )
 نشر من قبل Oldrich Novotny
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have used a single-particle detector system, based on secondary electron emission, for counting low-energetic (~keV/u) massive products originating from atomic and molecular ion reactions in the electrostatic Cryogenic Storage Ring (CSR). The detector is movable within the cryogenic vacuum chamber of CSR, and was used to measure production rates of a variety of charged and neutral daughter particles. In operation at a temperature of ~6 K, the detector is characterised by a high dynamic range, combining a low dark event rate with good high-rate particle counting capability. On-line measurement of the pulse height distributions proved to be an important monitor of the detector response at low temperature. Statistical pulse-height analysis allows to infer the particle detection efficiency of the detector, which has been found to be close to unity also in cryogenic operation at 6 K.



قيم البحث

اقرأ أيضاً

In this paper we propose a new method for measuring the cross section of low yield nuclear reactions by capturing the products in a cryogenically frozen noble gas solid. Once embedded in the noble gas solid, which is optically transparent, the produc t atoms can be selectively identified by laser induced fluorescence and individually counted via optical imaging to determine the cross section. Single atom sensitivity by optical imaging is feasible because the surrounding lattice of noble gas atoms facilitates a large wavelength shift between the excitation and emission spectrum of the product atoms. The tools and techniques from the fields of single molecule spectroscopy and superresolution imaging in combination with an electromagnetic recoil separator, for beam and isotopic differentiation, allow for a detection scheme with near unity efficiency, a high degree of selectivity, and single atom sensitivity. This technique could be used to determine a number of astrophysically important nuclear reaction rates.
82 - Robert von Hahn 2016
An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 $pm$ 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion) and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm$^{-3}$ is derived, equivalent to a room-temperature pressure below 10$^{-14}$ mbar. Fast atomic, molecular and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.
We apply near-threshold laser photodetachment to characterize the rotational quantum level distribution of OH$^-$ ions stored in the cryogenic ion-beam storage ring, DESIREE, at Stockholm University. We find that the stored ions relax to a rotational temperature of 13.4$pm$0.2 K with 94.9$pm$0.3 % of the ions in the rotational ground state. This is consistent with the storage ring temperature of 13.5$pm$0.5 K as measured with eight silicon diodes, but in contrast to all earlier studies in cryogenic traps and rings where the rotational temperatures were always much higher than those of the storage devices at their lowest temperatures. Furthermore, we actively modify the rotational distribution through selective photodetachment to produce an OH$^-$ beam where 99.1$pm$0.1 % of approximately one million stored ions are in the $J$=0 rotational ground state.
118 - C. Meyer 2017
Photodetachment thermometry on a beam of OH$^-$ in a cryogenic storage ring cooled to below 10 K is carried out using two-dimensional, frequency and time dependent photodetachment spectroscopy over 20 minutes of ion storage. In equilibrium with the l ow-level blackbody field, we find an effective radiative temperature near 15 K with about 90% of all ions in the rotational ground state. We measure the J = 1 natural lifetime (about 193 s) and determine the OH$^-$ rotational transition dipole moment with 1.5% uncertainty. We also measure rotationally dependent relative near-threshold photodetachment cross sections for photodetachment thermometry.
Orbit feedback system plays crucial roles for the operation of the 3rd generation light source. There are various issues in orbit feedback system should be addressed to achieve ultimate performance. The orbit feedback system in SRRC is upgraded recen tly to satisfy the requirement of demanding users. Based upon operational experiences of the last few years, new system was designed with more robustness and flexibility. Performance analysis tools are also developed to monitor system performance. Algorithms for feedback control, data acquisition and analysis are described and measurement is also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا