ﻻ يوجد ملخص باللغة العربية
After the accident in the Japanese Fukushima Dai-ichi nuclear power plant in March 2011 large amounts of radioactivity were released and distributed in the atmosphere. Among them were also radioactive noble gas isotopes which can be used as tracers to test global atmospheric circulation models. This work presents unique measurements of the radionuclide $^{133}$Xe from Fukushima in the upper troposphere above Germany. The measurements involve air sampling in a research jet aircraft followed by chromatographic xenon extraction and ultra-low background gas counting with miniaturized proportional counters. With this technique a detection limit of the order of 100 $^{133}$Xe atoms in litre-scale air samples (corresponding to about 100 mBq/m$^3$) is achievable. Our results provide proof that the $^{133}$Xe-rich ground level air layer from Fukushima was lifted up to the tropopause and distributed hemispherically. Moreover, comparisons with ground level air measurements indicate that the arrival of the radioactive plume at high altitude over Germany occurred several days before the ground level plume.
Coherent elastic neutrino-nucleus scattering (CE$ u$NS) offers a unique way to study neutrino properties and to search for new physics beyond the Standard Model. Nuclear reactors are promising sources to explore this process at low energies since the
We have investigated the status of the nuclear fuel assemblies in Unit-1 reactor of the Fukushima Daiichi Nuclear Power plant by the method called Cosmic Muon Radiography. In this study, muon tracking detectors were placed outside of the reactor buil
In this paper we propose a new method for measuring the cross section of low yield nuclear reactions by capturing the products in a cryogenically frozen noble gas solid. Once embedded in the noble gas solid, which is optically transparent, the produc
The performance of a muon radiography system designed to image the inner structure of a nuclear plant located at a distance of 64 m was evaluated. We concluded absence of the fuel in the pressure vessel during the measurement period and succeeded in
BRIKEN is a complex detection system to be installed at the RIB-facility of the RIKEN Nishina Center. It is aimed at the detection of heavy-ion implants, $beta$-particles, $gamma$-rays and $beta$-delayed neutrons. The whole detection setup involves t