ﻻ يوجد ملخص باللغة العربية
The missing mass spectroscopy of $Xi^{-}$ hypernuclei with the $(K^{-},K^{+})$ reaction is planned to be performed at the J-PARC K1.8 beam line by using a new magnetic spectrometer, Strangeness $-2$ Spectrometer (S-2S). A $v{C}$cerenkov detector with a radiation medium of pure water (refractive index of 1.33) is designed to be used for on-line proton rejection for a momentum range of 1.2 to 1.6 GeV/$c$ in S-2S. Prototype water $v{C}$erenkov detectors were developed and tested with positron beams and cosmic rays to estimate their proton-rejection capability. We achieved an average number of photoelectrons of greater than 200 with the latest prototype for cosmic rays, which was stable during an expected beam time of one month. The performance of the prototype in the cosmic-ray test was well reproduced with a Monte Carlo simulation in which some input parameters were adjusted. Based on the Monte Carlo simulation, we expect to achieve $>90%$ proton-rejection efficiency while maintaining $>95%$ $K^{+}$ survival ratio in the whole S-2S acceptance. The performance satisfies the requirements to conduct the spectroscopic study of $Xi^{-}$ hypernuclei at J-PARC.
The E885 collaboration utilized the 1.8 GeV/c K^- beam line at the AGS to accumulate 3 x 10^5 (K^-,K^+) events. Xi hypernuclear states are expected to be produced through the reaction K^- + ^{12}C -> K^+ + ^{12}_{Xi}Be. The measured missing-mass spec
The missing-mass spectroscopy of $Lambda$ hypernuclei via the $(e,e^{prime}K^{+})$ reaction has been developed through experiments at JLab Halls A and C in the last two decades. For the latest experiment, E05-115 in Hall C, we developed a new spectro
We report on the design, construction, commissioning, and performance of a threshold gas v{C}erenkov counter in an open configuration, which operates in a high luminosity environment and produces a high photo-electron yield. Part of a unique open geo
Various model-independent aspects of the $bar{K} N to K Xi$ reaction are investigated, starting from the determination of the most general structure of the reaction amplitude for $Xi$ baryons with $J^P=frac12^pm$ and $frac32^pm$ and the observables t
We study the production of $Xi^-$-hypernuclei, $^{12}_{Xi^{-}}$Be and $^{28}_{Xi^{-}}$Mg, via the ($K^-,K^+$) reaction within a covariant effective Lagrangian model, employing the bound $Xi^-$ and proton spinors calculated by the latest quark-meson c