ﻻ يوجد ملخص باللغة العربية
A $k$-connected set in an infinite graph, where $k > 0$ is an integer, is a set of vertices such that any two of its subsets of the same size $ell leq k$ can be connected by $ell$ disjoint paths in the whole graph. We characterise the existence of $k$-connected sets of arbitrary but fixed infinite cardinality via the existence of certain minors and topological minors. We also prove a duality theorem for the existence of such $k$-connected sets: if a graph contains no such $k$-connected set, then it has a tree-decomposition which, whenever it exists, precludes the existence of such a $k$-connected set.
For a graph G=(V,E), the k-dominating graph of G, denoted by $D_{k}(G)$, has vertices corresponding to the dominating sets of G having cardinality at most k, where two vertices of $D_{k}(G)$ are adjacent if and only if the dominating set correspondin
Halin showed that every edge minimal, k-vertex connected graph has a vertex of degree k. In this note, we prove the analogue to Halins theorem for edge-minimal, k-edge-connected graphs. We show there are two vertices of degree k in every edge-minimal, k-edge-connected graph.
Given a set $F$ of words, one associates to each word $w$ in $F$ an undirected graph, called its extension graph, and which describes the possible extensions of $w$ on the left and on the right. We investigate the family of sets of words defined by t
Tree sets are abstract structures that can be used to model various tree-shaped objects in combinatorics. Finite tree sets can be represented by finite graph-theoretical trees. We extend this representation theory to infinite tree sets. First we ch
We adapt the classical 3-decomposition of any 2-connected graph to the case of simple graphs (no loops or multiple edges). By analogy with the block-cutpoint tree of a connected graph, we deduce from this decomposition a bicolored tree tc(g) associat