ﻻ يوجد ملخص باللغة العربية
Tree sets are abstract structures that can be used to model various tree-shaped objects in combinatorics. Finite tree sets can be represented by finite graph-theoretical trees. We extend this representation theory to infinite tree sets. First we characterise those tree sets that can be represented by tree sets arising from infinite trees; these are precisely those tree sets without a chain of order type ${omega+1}$. Then we introduce and study a topological generalisation of infinite trees which can have limit edges, and show that every infinite tree set can be represented by the tree set admitted by a suitable such tree-like space.
Given a set $F$ of words, one associates to each word $w$ in $F$ an undirected graph, called its extension graph, and which describes the possible extensions of $w$ on the left and on the right. We investigate the family of sets of words defined by t
Phylogenetic trees canonically arise as embeddings of phylogenetic networks. We recently showed that the problem of deciding if two phylogenetic networks embed the same sets of phylogenetic trees is computationally hard, blue{in particular, we showed
A $k$-connected set in an infinite graph, where $k > 0$ is an integer, is a set of vertices such that any two of its subsets of the same size $ell leq k$ can be connected by $ell$ disjoint paths in the whole graph. We characterise the existence of
A finite or infinite matrix $A$ is image partition regular provided that whenever $mathbb{N}$ is finitely colored, there must be some $overset{rightarrow}{x}$ with entries from $mathbb{N}$ such that all entries of $A overset{rightarrow}{x}$ are in th
Whitneys extension problem asks the following: Given a compact set $Esubsetmathbb{R}^n$ and a function $f:Eto mathbb{R}$, how can we tell whether there exists $Fin C^m(mathbb{R}^n)$ such that $F|_E=f$? A 2006 theorem of Charles Fefferman answers this