ﻻ يوجد ملخص باللغة العربية
Given a set $F$ of words, one associates to each word $w$ in $F$ an undirected graph, called its extension graph, and which describes the possible extensions of $w$ on the left and on the right. We investigate the family of sets of words defined by the property of the extension graph of each word in the set to be acyclic or connected or a tree. We prove that in a uniformly recurrent tree set, the sets of first return words are bases of the free group on the alphabet. Concerning acyclic sets, we prove as a main result that a set $F$ is acyclic if and only if any bifix code included in $F$ is a basis of the subgroup that it generates.
Tree sets are abstract structures that can be used to model various tree-shaped objects in combinatorics. Finite tree sets can be represented by finite graph-theoretical trees. We extend this representation theory to infinite tree sets. First we ch
Phylogenetic trees canonically arise as embeddings of phylogenetic networks. We recently showed that the problem of deciding if two phylogenetic networks embed the same sets of phylogenetic trees is computationally hard, blue{in particular, we showed
A $k$-connected set in an infinite graph, where $k > 0$ is an integer, is a set of vertices such that any two of its subsets of the same size $ell leq k$ can be connected by $ell$ disjoint paths in the whole graph. We characterise the existence of
We prove that if a family of compact connected sets in the plane has the property that every three members of it are intersected by a line, then there are three lines intersecting all the sets in the family. This answers a question of Eckhoff from 19
Recall that an excedance of a permutation $pi$ is any position $i$ such that $pi_i > i$. Inspired by the work of Hopkins, McConville and Propp (Elec. J. Comb., 2017) on sorting using toppling, we say that a permutation is toppleable if it gets sorted