ترغب بنشر مسار تعليمي؟ اضغط هنا

Connected k-Dominating Graphs

90   0   0.0 ( 0 )
 نشر من قبل Christina (Kieka) Mynhardt
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a graph G=(V,E), the k-dominating graph of G, denoted by $D_{k}(G)$, has vertices corresponding to the dominating sets of G having cardinality at most k, where two vertices of $D_{k}(G)$ are adjacent if and only if the dominating set corresponding to one of the vertices can be obtained from the dominating set corresponding to the second vertex by the addition or deletion of a single vertex. We denote by $d_{0}(G)$ the smallest integer for which $D_{k}(G)$ is connected for all k greater than or equal to $d_{0}(G)$. It is known that $d_{0}(G)$ lies between $Gamma(G)+1$ and $|V|$ (inclusive), where ${Gamma}(G)$ is the upper domination number of G, but constructing a graph G such that $d_{0}(G)>{Gamma}(G)+1$ appears to be difficult. We present two related constructions. The first construction shows that for each integer k greater than or equal to 3 and each integer r from 1 to k-1, there exists a graph $G_{k,r}$ such that ${Gamma}(G_{k,r})=k, {gamma}(G_{k,r})=r+1$ and $d_{0}(G_{k,r})=k+r={Gamma}(G)+{gamma}(G)-1$. The second construction shows that for each integer k greater than or equal to 3 and each integer r from 1 to k-1, there exists a graph $Q_{k,r}$ such that ${Gamma}(Q_{k,r})=k, {gamma}(Q_{k,r})=r$ and $d_{0}(Q_{k,r})=k+r={Gamma}(G)+{gamma}(G)$.



قيم البحث

اقرأ أيضاً

A $k$-connected set in an infinite graph, where $k > 0$ is an integer, is a set of vertices such that any two of its subsets of the same size $ell leq k$ can be connected by $ell$ disjoint paths in the whole graph. We characterise the existence of $k$-connected sets of arbitrary but fixed infinite cardinality via the existence of certain minors and topological minors. We also prove a duality theorem for the existence of such $k$-connected sets: if a graph contains no such $k$-connected set, then it has a tree-decomposition which, whenever it exists, precludes the existence of such a $k$-connected set.
Halin showed that every edge minimal, k-vertex connected graph has a vertex of degree k. In this note, we prove the analogue to Halins theorem for edge-minimal, k-edge-connected graphs. We show there are two vertices of degree k in every edge-minimal, k-edge-connected graph.
141 - Adam Blumenthal 2019
In this paper, we study independent domination in directed graphs, which was recently introduced by Cary, Cary, and Prabhu. We provide a short, algorithmic proof that all directed acyclic graphs contain an independent dominating set. Using linear alg ebraic tools, we prove that any strongly connected graph with even period has at least two independent dominating sets, generalizing several of the results of Cary, Cary, and Prabhu. We prove that determining the period of the graph is not sufficient to determine the existence of an independent dominating set by constructing a few examples of infinite families of graphs. We show that the direct analogue of Vizings Conjecture does not hold for independent domination number in directed graphs by providing two infinite families of graphs. We initialize the study of time complexity for independent domination in directed graphs, proving that the existence of an independent dominating set in directed acyclic graphs and strongly connected graphs with even period are in the time complexity class $P$. We also provide an algorithm for determining existence of an independent dominating set for digraphs with period greater than $1$.
153 - Andrei Gagarin 2008
We adapt the classical 3-decomposition of any 2-connected graph to the case of simple graphs (no loops or multiple edges). By analogy with the block-cutpoint tree of a connected graph, we deduce from this decomposition a bicolored tree tc(g) associat ed with any 2-connected graph g, whose white vertices are the 3-components of g (3-connected components or polygons) and whose black vertices are bonds linking together these 3-components, arising from separating pairs of vertices of g. Two fundamental relationships on graphs and networks follow from this construction. The first one is a dissymmetry theorem which leads to the expression of the class B=B(F) of 2-connected graphs, all of whose 3-connected components belong to a given class F of 3-connected graphs, in terms of various rootings of B. The second one is a functional equation which characterizes the corresponding class R=R(F) of two-pole networks all of whose 3-connected components are in F. All the rootings of B are then expressed in terms of F and R. There follow corresponding identities for all the associated series, in particular the edge index series. Numerous enumerative consequences are discussed.
A graph $Gamma$ is $k$-connected-homogeneous ($k$-CH) if $k$ is a positive integer and any isomorphism between connected induced subgraphs of order at most $k$ extends to an automorphism of $Gamma$, and connected-homogeneous (CH) if this property hol ds for all $k$. Locally finite, locally connected graphs often fail to be 4-CH because of a combinatorial obstruction called the unique $x$ property; we prove that this property holds for locally strongly regular graphs under various purely combinatorial assumptions. We then classify the locally finite, locally connected 4-CH graphs. We also classify the locally finite, locally disconnected 4-CH graphs containing 3-cycles and induced 4-cycles, and prove that, with the possible exception of locally disconnected graphs containing 3-cycles but no induced 4-cycles, every finite 7-CH graph is CH.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا