ﻻ يوجد ملخص باللغة العربية
For a graph G=(V,E), the k-dominating graph of G, denoted by $D_{k}(G)$, has vertices corresponding to the dominating sets of G having cardinality at most k, where two vertices of $D_{k}(G)$ are adjacent if and only if the dominating set corresponding to one of the vertices can be obtained from the dominating set corresponding to the second vertex by the addition or deletion of a single vertex. We denote by $d_{0}(G)$ the smallest integer for which $D_{k}(G)$ is connected for all k greater than or equal to $d_{0}(G)$. It is known that $d_{0}(G)$ lies between $Gamma(G)+1$ and $|V|$ (inclusive), where ${Gamma}(G)$ is the upper domination number of G, but constructing a graph G such that $d_{0}(G)>{Gamma}(G)+1$ appears to be difficult. We present two related constructions. The first construction shows that for each integer k greater than or equal to 3 and each integer r from 1 to k-1, there exists a graph $G_{k,r}$ such that ${Gamma}(G_{k,r})=k, {gamma}(G_{k,r})=r+1$ and $d_{0}(G_{k,r})=k+r={Gamma}(G)+{gamma}(G)-1$. The second construction shows that for each integer k greater than or equal to 3 and each integer r from 1 to k-1, there exists a graph $Q_{k,r}$ such that ${Gamma}(Q_{k,r})=k, {gamma}(Q_{k,r})=r$ and $d_{0}(Q_{k,r})=k+r={Gamma}(G)+{gamma}(G)$.
A $k$-connected set in an infinite graph, where $k > 0$ is an integer, is a set of vertices such that any two of its subsets of the same size $ell leq k$ can be connected by $ell$ disjoint paths in the whole graph. We characterise the existence of
Halin showed that every edge minimal, k-vertex connected graph has a vertex of degree k. In this note, we prove the analogue to Halins theorem for edge-minimal, k-edge-connected graphs. We show there are two vertices of degree k in every edge-minimal, k-edge-connected graph.
In this paper, we study independent domination in directed graphs, which was recently introduced by Cary, Cary, and Prabhu. We provide a short, algorithmic proof that all directed acyclic graphs contain an independent dominating set. Using linear alg
We adapt the classical 3-decomposition of any 2-connected graph to the case of simple graphs (no loops or multiple edges). By analogy with the block-cutpoint tree of a connected graph, we deduce from this decomposition a bicolored tree tc(g) associat
A graph $Gamma$ is $k$-connected-homogeneous ($k$-CH) if $k$ is a positive integer and any isomorphism between connected induced subgraphs of order at most $k$ extends to an automorphism of $Gamma$, and connected-homogeneous (CH) if this property hol