ﻻ يوجد ملخص باللغة العربية
We analyze a mathematical model of elastic dislocations with applications to geophysics, where by an elastic dislocation we mean an open, oriented Lipschitz surface in the interior of an elastic solid, across which there is a discontinuity of the displacement. We model the Earth as an infinite, isotropic, inhomogeneous, elastic medium occupying a half space, and assume only Lipschitz continuity of the Lame parameters. We study the well posedness of very weak solutions to the forward problem of determining the displacement by imposing traction-free boundary conditions at the surface, continuity of the traction and a given jump on the displacement across the fault. We employ suitable weighted Sobolev spaces for the analysis. We utilize the well posedness of the forward problem and unique-continuation arguments to establish uniqueness in the inverse problem of determining the dislocation surface and the displacement jump from measuring the displacement at the surface of the Earth. Uniqueness holds for tangential or normal jumps and under some geometric conditions on the surface.
In this paper we analyse the behaviour of a pile-up of vertically periodic walls of edge dislocations at an obstacle, represented by a locked dislocation wall. Starting from a continuum non-local energy $E_gamma$ modelling the interactions$-$at a typ
In this paper, we present a semiclassical description of surface waves or modes in an elastic medium near a boundary, in spatial dimension three. The medium is assumed to be essentially stratified near the boundary at some scale comparable to the wav
A system of $n$ screw dislocations in an isotropic crystal undergoing antiplane shear is studied in the framework of linear elasticity. Imposing a suitable boundary condition for the strain, namely requesting the non-vanishing of its boundary integra
In this paper, we prove the convergence from the atomistic model to the Peierls--Nabarro (PN) model of two-dimensional bilayer system with complex lattice. We show that the displacement field of the dislocation solution of the PN model converges to t
The work analyzes a one-dimensional viscoelastic model of blood vessel growth under nonlinear friction with surroundings, and provides numerical simulations for various growing cases. For the nonlinear differential equations, two sufficient condition