ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence from Atomistic Model to Peierls-Nabarro Model for Dislocations in Bilayer System with Complex Lattice

161   0   0.0 ( 0 )
 نشر من قبل Yahong Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we prove the convergence from the atomistic model to the Peierls--Nabarro (PN) model of two-dimensional bilayer system with complex lattice. We show that the displacement field of the dislocation solution of the PN model converges to the dislocation solution of the atomistic model with second-order accuracy. The consistency of PN model and the stability of atomistic model are essential in our proof. The main idea of our approach is to use several low-degree polynomials to approximate the energy due to atomistic interactions of different groups of atoms of the complex lattice.



قيم البحث

اقرأ أيضاً

In this paper, we propose a lattice Boltzmann (LB) model for the generalized coupled cross-diffusion-fluid system. Through the direct Taylor expansion method, the proposed LB model can correctly recover the macroscopic equations. The cross diffusion terms in the coupled system are modeled by introducing additional collision operators, which can be used to avoid special treatments for the gradient terms. In addition, the auxiliary source terms are constructed properly such that the numerical diffusion caused by the convection can be eliminated. We adopt the developed LB model to study two important systems, i.e., the coupled chemotaxis-fluid system and the double-diffusive convection system with Soret and Dufour effects. We first test the present LB model through considering a steady-state case of coupled chemotaxis-fluid system, then we analyze the influences of some physical parameters on the formation of sinking plumes. Finally, the double-diffusive natural convection system with Soret and Dufour effects is also studied, and the numerical results agree well with some previous works.
We present a non-local version of a scalar balance law modeling traffic flow with on-ramps and off-ramps. The source term is used to describe the traffic flow over the on-ramp and off-ramps. We approximate the problem using an upwind-type numerical s cheme and we provide L^infty and BV estimates for the sequence of approximate solutions. Together with a discrete entropy inequality, we also show the well-posedness of the considered class of scalar balance laws. Some numerical simulations illustrate the behaviour of solutions in sample cases.
We consider a parabolic sine-Gordon model with periodic boundary conditions. We prove a fundamental maximum principle which gives a priori uniform control of the solution. In the one-dimensional case we classify all bounded steady states and exhibit some explicit solutions. For the numerical discretization we employ first order IMEX, and second order BDF2 discretization without any additional stabilization term. We rigorously prove the energy stability of the numerical schemes under nearly sharp and quite mild time step constraints. We demonstrate the striking similarity of the parabolic sine-Gordon model with the standard Allen-Cahn equations with double well potentials.
115 - Xiaodi Zhang 2021
In this paper, we propose and analyze a diffuse interface model for inductionless magnetohydrodynamic fluids. The model couples a convective Cahn-Hilliard equation for the evolution of the interface, the Navier-Stokes system for fluid flow and the po ssion quation for electrostatics. The model is derived from Onsagers variational principle and conservation laws systematically. We perform formally matched asymptotic expansions and develop several sharp interface models in the limit when the interfacial thickness tends to zero. It is shown that the sharp interface limit of the models are the standard incompressible inductionless magnetohydrodynamic equations coupled with several different interface conditions for different choice of the mobilities. Numerical results verify the convergence of the diffuse interface model with different mobilitiess.
In this paper, a perfectly matched layer (PML) method is proposed to solve the time-domain electromagnetic scattering problems in 3D effectively. The PML problem is defined in a spherical layer and derived by using the Laplace transform and real coor dinate stretching in the frequency domain. The well-posedness and the stability estimate of the PML problem are first proved based on the Laplace transform and the energy method. The exponential convergence of the PML method is then established in terms of the thickness of the layer and the PML absorbing parameter. As far as we know, this is the first convergence result for the time-domain PML method for the three-dimensional Maxwell equations. Our proof is mainly based on the stability estimates of solutions of the truncated PML problem and the exponential decay estimates of the stretched dyadic Greens function for the Maxwell equations in the free space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا